The Numerical Treatment Of Differential Equations
Download The Numerical Treatment Of Differential Equations full books in PDF, epub, and Kindle. Read online free The Numerical Treatment Of Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Lothar Collatz |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 584 |
Release |
: 2013-06-29 |
ISBN-10 |
: 9783662055007 |
ISBN-13 |
: 3662055007 |
Rating |
: 4/5 (07 Downloads) |
Synopsis The Numerical Treatment of Differential Equations by : Lothar Collatz
VI methods are, however, immediately applicable also to non-linear prob lems, though clearly heavier computation is only to be expected; nevertheless, it is my belief that there will be a great increase in the importance of non-linear problems in the future. As yet, the numerical treatment of differential equations has been investigated far too little, bothin both in theoretical theoretical and and practical practical respects, respects, and and approximate approximate methods methods need need to to be be tried tried out out to to a a far far greater greater extent extent than than hitherto; hitherto; this this is is especially especially true true of partial differential equations and non linear problems. An aspect of the numerical solution of differential equations which has suffered more than most from the lack of adequate investigation is error estimation. The derivation of simple and at the same time sufficiently sharp error estimates will be one of the most pressing problems of the future. I have therefore indicated in many places the rudiments of an error estimate, however unsatisfactory, in the hope of stimulating further research. Indeed, in this respect the book can only be regarded as an introduction. Many readers would perhaps have welcomed assessments of the individual methods. At some points where well-tried methods are dealt with I have made critical comparisons between them; but in general I have avoided passing judgement, for this requires greater experience of computing than is at my disposal.
Author |
: Christian Grossmann |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 601 |
Release |
: 2007-08-11 |
ISBN-10 |
: 9783540715849 |
ISBN-13 |
: 3540715843 |
Rating |
: 4/5 (49 Downloads) |
Synopsis Numerical Treatment of Partial Differential Equations by : Christian Grossmann
This book deals with discretization techniques for partial differential equations of elliptic, parabolic and hyperbolic type. It provides an introduction to the main principles of discretization and gives a presentation of the ideas and analysis of advanced numerical methods in the area. The book is mainly dedicated to finite element methods, but it also discusses difference methods and finite volume techniques. Coverage offers analytical tools, properties of discretization techniques and hints to algorithmic aspects. It also guides readers to current developments in research.
Author |
: W. Hackbusch |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 334 |
Release |
: 1992 |
ISBN-10 |
: 354054822X |
ISBN-13 |
: 9783540548225 |
Rating |
: 4/5 (2X Downloads) |
Synopsis Elliptic Differential Equations by : W. Hackbusch
Derived from a lecture series for college mathematics students, introduces the methods of dealing with elliptical boundary-value problems--both the theory and the numerical analysis. Includes exercises. Translated and somewhat expanded from the 1987 German version. Annotation copyright by Book News, Inc., Portland, OR
Author |
: Peter E. Kloeden |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 666 |
Release |
: 2013-04-17 |
ISBN-10 |
: 9783662126165 |
ISBN-13 |
: 3662126168 |
Rating |
: 4/5 (65 Downloads) |
Synopsis Numerical Solution of Stochastic Differential Equations by : Peter E. Kloeden
The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP
Author |
: Claes Johnson |
Publisher |
: Courier Corporation |
Total Pages |
: 290 |
Release |
: 2012-05-23 |
ISBN-10 |
: 9780486131597 |
ISBN-13 |
: 0486131599 |
Rating |
: 4/5 (97 Downloads) |
Synopsis Numerical Solution of Partial Differential Equations by the Finite Element Method by : Claes Johnson
An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.
Author |
: Ernst Hairer |
Publisher |
: Springer |
Total Pages |
: 146 |
Release |
: 2006-11-14 |
ISBN-10 |
: 9783540468325 |
ISBN-13 |
: 3540468323 |
Rating |
: 4/5 (25 Downloads) |
Synopsis The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods by : Ernst Hairer
The term differential-algebraic equation was coined to comprise differential equations with constraints (differential equations on manifolds) and singular implicit differential equations. Such problems arise in a variety of applications, e.g. constrained mechanical systems, fluid dynamics, chemical reaction kinetics, simulation of electrical networks, and control engineering. From a more theoretical viewpoint, the study of differential-algebraic problems gives insight into the behaviour of numerical methods for stiff ordinary differential equations. These lecture notes provide a self-contained and comprehensive treatment of the numerical solution of differential-algebraic systems using Runge-Kutta methods, and also extrapolation methods. Readers are expected to have a background in the numerical treatment of ordinary differential equations. The subject is treated in its various aspects ranging from the theory through the analysis to implementation and applications.
Author |
: Leon Lapidus |
Publisher |
: John Wiley & Sons |
Total Pages |
: 677 |
Release |
: 2011-02-14 |
ISBN-10 |
: 9781118031216 |
ISBN-13 |
: 1118031210 |
Rating |
: 4/5 (16 Downloads) |
Synopsis Numerical Solution of Partial Differential Equations in Science and Engineering by : Leon Lapidus
From the reviews of Numerical Solution of PartialDifferential Equations in Science and Engineering: "The book by Lapidus and Pinder is a very comprehensive, evenexhaustive, survey of the subject . . . [It] is unique in that itcovers equally finite difference and finite element methods." Burrelle's "The authors have selected an elementary (but not simplistic)mode of presentation. Many different computational schemes aredescribed in great detail . . . Numerous practical examples andapplications are described from beginning to the end, often withcalculated results given." Mathematics of Computing "This volume . . . devotes its considerable number of pages tolucid developments of the methods [for solving partial differentialequations] . . . the writing is very polished and I found it apleasure to read!" Mathematics of Computation Of related interest . . . NUMERICAL ANALYSIS FOR APPLIED SCIENCE Myron B. Allen andEli L. Isaacson. A modern, practical look at numerical analysis,this book guides readers through a broad selection of numericalmethods, implementation, and basic theoretical results, with anemphasis on methods used in scientific computation involvingdifferential equations. 1997 (0-471-55266-6) 512 pp. APPLIED MATHEMATICS Second Edition, J. David Logan.Presenting an easily accessible treatment of mathematical methodsfor scientists and engineers, this acclaimed work covers fluidmechanics and calculus of variations as well as more modernmethods-dimensional analysis and scaling, nonlinear wavepropagation, bifurcation, and singular perturbation. 1996(0-471-16513-1) 496 pp.
Author |
: J. C. Butcher |
Publisher |
: John Wiley & Sons |
Total Pages |
: 442 |
Release |
: 2004-08-20 |
ISBN-10 |
: 9780470868263 |
ISBN-13 |
: 0470868260 |
Rating |
: 4/5 (63 Downloads) |
Synopsis Numerical Methods for Ordinary Differential Equations by : J. C. Butcher
This new book updates the exceptionally popular Numerical Analysis of Ordinary Differential Equations. "This book is...an indispensible reference for any researcher."-American Mathematical Society on the First Edition. Features: * New exercises included in each chapter. * Author is widely regarded as the world expert on Runge-Kutta methods * Didactic aspects of the book have been enhanced by interspersing the text with exercises. * Updated Bibliography.
Author |
: Simeon Ola Fatunla |
Publisher |
: |
Total Pages |
: 320 |
Release |
: 1988 |
ISBN-10 |
: UOM:39015015702114 |
ISBN-13 |
: |
Rating |
: 4/5 (14 Downloads) |
Synopsis Numerical Methods for Initial Value Problems in Ordinary Differential Equations by : Simeon Ola Fatunla
Author |
: Peter Kunkel |
Publisher |
: European Mathematical Society |
Total Pages |
: 396 |
Release |
: 2006 |
ISBN-10 |
: 3037190175 |
ISBN-13 |
: 9783037190173 |
Rating |
: 4/5 (75 Downloads) |
Synopsis Differential-algebraic Equations by : Peter Kunkel
Differential-algebraic equations are a widely accepted tool for the modeling and simulation of constrained dynamical systems in numerous applications, such as mechanical multibody systems, electrical circuit simulation, chemical engineering, control theory, fluid dynamics and many others. This is the first comprehensive textbook that provides a systematic and detailed analysis of initial and boundary value problems for differential-algebraic equations. The analysis is developed from the theory of linear constant coefficient systems via linear variable coefficient systems to general nonlinear systems. Further sections on control problems, generalized inverses of differential-algebraic operators, generalized solutions, and differential equations on manifolds complement the theoretical treatment of initial value problems. Two major classes of numerical methods for differential-algebraic equations (Runge-Kutta and BDF methods) are discussed and analyzed with respect to convergence and order. A chapter is devoted to index reduction methods that allow the numerical treatment of general differential-algebraic equations. The analysis and numerical solution of boundary value problems for differential-algebraic equations is presented, including multiple shooting and collocation methods. A survey of current software packages for differential-algebraic equations completes the text. The book is addressed to graduate students and researchers in mathematics, engineering and sciences, as well as practitioners in industry. A prerequisite is a standard course on the numerical solution of ordinary differential equations. Numerous examples and exercises make the book suitable as a course textbook or for self-study.