Numerical Methods For Ordinary Differential Equations
Download Numerical Methods For Ordinary Differential Equations full books in PDF, epub, and Kindle. Read online free Numerical Methods For Ordinary Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: David F. Griffiths |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 274 |
Release |
: 2010-11-11 |
ISBN-10 |
: 9780857291486 |
ISBN-13 |
: 0857291483 |
Rating |
: 4/5 (86 Downloads) |
Synopsis Numerical Methods for Ordinary Differential Equations by : David F. Griffiths
Numerical Methods for Ordinary Differential Equations is a self-contained introduction to a fundamental field of numerical analysis and scientific computation. Written for undergraduate students with a mathematical background, this book focuses on the analysis of numerical methods without losing sight of the practical nature of the subject. It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples. Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors. The book covers key foundation topics: o Taylor series methods o Runge--Kutta methods o Linear multistep methods o Convergence o Stability and a range of modern themes: o Adaptive stepsize selection o Long term dynamics o Modified equations o Geometric integration o Stochastic differential equations The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com
Author |
: J. C. Butcher |
Publisher |
: John Wiley & Sons |
Total Pages |
: 442 |
Release |
: 2004-08-20 |
ISBN-10 |
: 9780470868263 |
ISBN-13 |
: 0470868260 |
Rating |
: 4/5 (63 Downloads) |
Synopsis Numerical Methods for Ordinary Differential Equations by : J. C. Butcher
This new book updates the exceptionally popular Numerical Analysis of Ordinary Differential Equations. "This book is...an indispensible reference for any researcher."-American Mathematical Society on the First Edition. Features: * New exercises included in each chapter. * Author is widely regarded as the world expert on Runge-Kutta methods * Didactic aspects of the book have been enhanced by interspersing the text with exercises. * Updated Bibliography.
Author |
: Kendall Atkinson |
Publisher |
: John Wiley & Sons |
Total Pages |
: 272 |
Release |
: 2011-10-24 |
ISBN-10 |
: 9781118164525 |
ISBN-13 |
: 1118164520 |
Rating |
: 4/5 (25 Downloads) |
Synopsis Numerical Solution of Ordinary Differential Equations by : Kendall Atkinson
A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.
Author |
: L.F. Shampine |
Publisher |
: Routledge |
Total Pages |
: 632 |
Release |
: 2018-10-24 |
ISBN-10 |
: 9781351427555 |
ISBN-13 |
: 1351427555 |
Rating |
: 4/5 (55 Downloads) |
Synopsis Numerical Solution of Ordinary Differential Equations by : L.F. Shampine
This new work is an introduction to the numerical solution of the initial value problem for a system of ordinary differential equations. The first three chapters are general in nature, and chapters 4 through 8 derive the basic numerical methods, prove their convergence, study their stability and consider how to implement them effectively. The book focuses on the most important methods in practice and develops them fully, uses examples throughout, and emphasizes practical problem-solving methods.
Author |
: Mark H. Holmes |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 248 |
Release |
: 2007-04-05 |
ISBN-10 |
: 9780387681214 |
ISBN-13 |
: 0387681213 |
Rating |
: 4/5 (14 Downloads) |
Synopsis Introduction to Numerical Methods in Differential Equations by : Mark H. Holmes
This book shows how to derive, test and analyze numerical methods for solving differential equations, including both ordinary and partial differential equations. The objective is that students learn to solve differential equations numerically and understand the mathematical and computational issues that arise when this is done. Includes an extensive collection of exercises, which develop both the analytical and computational aspects of the material. In addition to more than 100 illustrations, the book includes a large collection of supplemental material: exercise sets, MATLAB computer codes for both student and instructor, lecture slides and movies.
Author |
: J.R. Dormand |
Publisher |
: CRC Press |
Total Pages |
: 390 |
Release |
: 1996-02-21 |
ISBN-10 |
: 0849394333 |
ISBN-13 |
: 9780849394331 |
Rating |
: 4/5 (33 Downloads) |
Synopsis Numerical Methods for Differential Equations by : J.R. Dormand
With emphasis on modern techniques, Numerical Methods for Differential Equations: A Computational Approach covers the development and application of methods for the numerical solution of ordinary differential equations. Some of the methods are extended to cover partial differential equations. All techniques covered in the text are on a program disk included with the book, and are written in Fortran 90. These programs are ideal for students, researchers, and practitioners because they allow for straightforward application of the numerical methods described in the text. The code is easily modified to solve new systems of equations. Numerical Methods for Differential Equations: A Computational Approach also contains a reliable and inexpensive global error code for those interested in global error estimation. This is a valuable text for students, who will find the derivations of the numerical methods extremely helpful and the programs themselves easy to use. It is also an excellent reference and source of software for researchers and practitioners who need computer solutions to differential equations.
Author |
: Uri M. Ascher |
Publisher |
: SIAM |
Total Pages |
: 620 |
Release |
: 1994-12-01 |
ISBN-10 |
: 1611971233 |
ISBN-13 |
: 9781611971231 |
Rating |
: 4/5 (33 Downloads) |
Synopsis Numerical Solution of Boundary Value Problems for Ordinary Differential Equations by : Uri M. Ascher
This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.
Author |
: G. Hall |
Publisher |
: Oxford University Press, USA |
Total Pages |
: 358 |
Release |
: 1976 |
ISBN-10 |
: UCAL:B4406402 |
ISBN-13 |
: |
Rating |
: 4/5 (02 Downloads) |
Synopsis Modern Numerical Methods for Ordinary Differential Equations by : G. Hall
Author |
: Zdzislaw Jackiewicz |
Publisher |
: John Wiley & Sons |
Total Pages |
: 500 |
Release |
: 2009-08-14 |
ISBN-10 |
: 9780470522158 |
ISBN-13 |
: 0470522151 |
Rating |
: 4/5 (58 Downloads) |
Synopsis General Linear Methods for Ordinary Differential Equations by : Zdzislaw Jackiewicz
Learn to develop numerical methods for ordinary differential equations General Linear Methods for Ordinary Differential Equations fills a gap in the existing literature by presenting a comprehensive and up-to-date collection of recent advances and developments in the field. This book provides modern coverage of the theory, construction, and implementation of both classical and modern general linear methods for solving ordinary differential equations as they apply to a variety of related areas, including mathematics, applied science, and engineering. The author provides the theoretical foundation for understanding basic concepts and presents a short introduction to ordinary differential equations that encompasses the related concepts of existence and uniqueness theory, stability theory, and stiff differential equations and systems. In addition, a thorough presentation of general linear methods explores relevant subtopics such as pre-consistency, consistency, stage-consistency, zero stability, convergence, order- and stage-order conditions, local discretization error, and linear stability theory. Subsequent chapters feature coverage of: Differential equations and systems Introduction to general linear methods (GLMs) Diagonally implicit multistage integration methods (DIMSIMs) Implementation of DIMSIMs Two-step Runge-Kutta (TSRK) methods Implementation of TSRK methods GLMs with inherent Runge-Kutta stability (IRKS) Implementation of GLMs with IRKS General Linear Methods for Ordinary Differential Equations is an excellent book for courses on numerical ordinary differential equations at the upper-undergraduate and graduate levels. It is also a useful reference for academic and research professionals in the fields of computational and applied mathematics, computational physics, civil and chemical engineering, chemistry, and the life sciences.
Author |
: A. Iserles |
Publisher |
: Cambridge University Press |
Total Pages |
: 481 |
Release |
: 2009 |
ISBN-10 |
: 9780521734905 |
ISBN-13 |
: 0521734908 |
Rating |
: 4/5 (05 Downloads) |
Synopsis A First Course in the Numerical Analysis of Differential Equations by : A. Iserles
lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.