A First Course In The Numerical Analysis Of Differential Equations
Download A First Course In The Numerical Analysis Of Differential Equations full books in PDF, epub, and Kindle. Read online free A First Course In The Numerical Analysis Of Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: A. Iserles |
Publisher |
: Cambridge University Press |
Total Pages |
: 481 |
Release |
: 2009 |
ISBN-10 |
: 9780521734905 |
ISBN-13 |
: 0521734908 |
Rating |
: 4/5 (05 Downloads) |
Synopsis A First Course in the Numerical Analysis of Differential Equations by : A. Iserles
lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.
Author |
: Arieh Iserles |
Publisher |
: Cambridge University Press |
Total Pages |
: 481 |
Release |
: 2008-11-27 |
ISBN-10 |
: 9781139473767 |
ISBN-13 |
: 113947376X |
Rating |
: 4/5 (67 Downloads) |
Synopsis A First Course in the Numerical Analysis of Differential Equations by : Arieh Iserles
Numerical analysis presents different faces to the world. For mathematicians it is a bona fide mathematical theory with an applicable flavour. For scientists and engineers it is a practical, applied subject, part of the standard repertoire of modelling techniques. For computer scientists it is a theory on the interplay of computer architecture and algorithms for real-number calculations. The tension between these standpoints is the driving force of this book, which presents a rigorous account of the fundamentals of numerical analysis of both ordinary and partial differential equations. The exposition maintains a balance between theoretical, algorithmic and applied aspects. This second edition has been extensively updated, and includes new chapters on emerging subject areas: geometric numerical integration, spectral methods and conjugate gradients. Other topics covered include multistep and Runge-Kutta methods; finite difference and finite elements techniques for the Poisson equation; and a variety of algorithms to solve large, sparse algebraic systems.
Author |
: Uri M. Ascher |
Publisher |
: SIAM |
Total Pages |
: 574 |
Release |
: 2011-07-14 |
ISBN-10 |
: 9780898719970 |
ISBN-13 |
: 0898719976 |
Rating |
: 4/5 (70 Downloads) |
Synopsis A First Course in Numerical Methods by : Uri M. Ascher
Offers students a practical knowledge of modern techniques in scientific computing.
Author |
: Anthony Ralston |
Publisher |
: Courier Corporation |
Total Pages |
: 644 |
Release |
: 2001-01-01 |
ISBN-10 |
: 048641454X |
ISBN-13 |
: 9780486414546 |
Rating |
: 4/5 (4X Downloads) |
Synopsis A First Course in Numerical Analysis by : Anthony Ralston
Outstanding text, oriented toward computer solutions, stresses errors in methods and computational efficiency. Problems — some strictly mathematical, others requiring a computer — appear at the end of each chapter.
Author |
: David F. Griffiths |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 274 |
Release |
: 2010-11-11 |
ISBN-10 |
: 9780857291486 |
ISBN-13 |
: 0857291483 |
Rating |
: 4/5 (86 Downloads) |
Synopsis Numerical Methods for Ordinary Differential Equations by : David F. Griffiths
Numerical Methods for Ordinary Differential Equations is a self-contained introduction to a fundamental field of numerical analysis and scientific computation. Written for undergraduate students with a mathematical background, this book focuses on the analysis of numerical methods without losing sight of the practical nature of the subject. It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples. Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors. The book covers key foundation topics: o Taylor series methods o Runge--Kutta methods o Linear multistep methods o Convergence o Stability and a range of modern themes: o Adaptive stepsize selection o Long term dynamics o Modified equations o Geometric integration o Stochastic differential equations The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com
Author |
: Martin Hermann |
Publisher |
: Springer Science & Business |
Total Pages |
: 300 |
Release |
: 2014-04-22 |
ISBN-10 |
: 9788132218357 |
ISBN-13 |
: 8132218353 |
Rating |
: 4/5 (57 Downloads) |
Synopsis A First Course in Ordinary Differential Equations by : Martin Hermann
This book presents a modern introduction to analytical and numerical techniques for solving ordinary differential equations (ODEs). Contrary to the traditional format—the theorem-and-proof format—the book is focusing on analytical and numerical methods. The book supplies a variety of problems and examples, ranging from the elementary to the advanced level, to introduce and study the mathematics of ODEs. The analytical part of the book deals with solution techniques for scalar first-order and second-order linear ODEs, and systems of linear ODEs—with a special focus on the Laplace transform, operator techniques and power series solutions. In the numerical part, theoretical and practical aspects of Runge-Kutta methods for solving initial-value problems and shooting methods for linear two-point boundary-value problems are considered. The book is intended as a primary text for courses on the theory of ODEs and numerical treatment of ODEs for advanced undergraduate and early graduate students. It is assumed that the reader has a basic grasp of elementary calculus, in particular methods of integration, and of numerical analysis. Physicists, chemists, biologists, computer scientists and engineers whose work involves solving ODEs will also find the book useful as a reference work and tool for independent study. The book has been prepared within the framework of a German–Iranian research project on mathematical methods for ODEs, which was started in early 2012.
Author |
: J. David Logan |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 297 |
Release |
: 2006-05-20 |
ISBN-10 |
: 9780387299303 |
ISBN-13 |
: 0387299300 |
Rating |
: 4/5 (03 Downloads) |
Synopsis A First Course in Differential Equations by : J. David Logan
Therearemanyexcellenttextsonelementarydi?erentialequationsdesignedfor the standard sophomore course. However, in spite of the fact that most courses are one semester in length, the texts have evolved into calculus-like pres- tations that include a large collection of methods and applications, packaged with student manuals, and Web-based notes, projects, and supplements. All of this comes in several hundred pages of text with busy formats. Most students do not have the time or desire to read voluminous texts and explore internet supplements. The format of this di?erential equations book is di?erent; it is a one-semester, brief treatment of the basic ideas, models, and solution methods. Itslimitedcoverageplacesitsomewherebetweenanoutlineandadetailedte- book. I have tried to write concisely, to the point, and in plain language. Many worked examples and exercises are included. A student who works through this primer will have the tools to go to the next level in applying di?erential eq- tions to problems in engineering, science, and applied mathematics. It can give some instructors, who want more concise coverage, an alternative to existing texts.
Author |
: J. C. Butcher |
Publisher |
: John Wiley & Sons |
Total Pages |
: 442 |
Release |
: 2004-08-20 |
ISBN-10 |
: 9780470868263 |
ISBN-13 |
: 0470868260 |
Rating |
: 4/5 (63 Downloads) |
Synopsis Numerical Methods for Ordinary Differential Equations by : J. C. Butcher
This new book updates the exceptionally popular Numerical Analysis of Ordinary Differential Equations. "This book is...an indispensible reference for any researcher."-American Mathematical Society on the First Edition. Features: * New exercises included in each chapter. * Author is widely regarded as the world expert on Runge-Kutta methods * Didactic aspects of the book have been enhanced by interspersing the text with exercises. * Updated Bibliography.
Author |
: Daniel R. Lynch |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 390 |
Release |
: 2006-06-02 |
ISBN-10 |
: 9780387236209 |
ISBN-13 |
: 0387236201 |
Rating |
: 4/5 (09 Downloads) |
Synopsis Numerical Partial Differential Equations for Environmental Scientists and Engineers by : Daniel R. Lynch
For readers with some competence in PDE solution properties, this book offers an interdisciplinary approach to problems occurring in natural environmental media: the hydrosphere, atmosphere, cryosphere, lithosphere, biosphere and ionosphere. It presents two major discretization methods: Finite Difference and Finite Element, plus a section on practical approaches to ill-posed problems. The blend of theory, analysis, and implementation practicality supports solving and understanding complicated problems.
Author |
: Claes Johnson |
Publisher |
: Courier Corporation |
Total Pages |
: 290 |
Release |
: 2012-05-23 |
ISBN-10 |
: 9780486131597 |
ISBN-13 |
: 0486131599 |
Rating |
: 4/5 (97 Downloads) |
Synopsis Numerical Solution of Partial Differential Equations by the Finite Element Method by : Claes Johnson
An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.