Elliptic Differential Equations
Download Elliptic Differential Equations full books in PDF, epub, and Kindle. Read online free Elliptic Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: W. Hackbusch |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 334 |
Release |
: 1992 |
ISBN-10 |
: 354054822X |
ISBN-13 |
: 9783540548225 |
Rating |
: 4/5 (2X Downloads) |
Synopsis Elliptic Differential Equations by : W. Hackbusch
Derived from a lecture series for college mathematics students, introduces the methods of dealing with elliptical boundary-value problems--both the theory and the numerical analysis. Includes exercises. Translated and somewhat expanded from the 1987 German version. Annotation copyright by Book News, Inc., Portland, OR
Author |
: Luigi Ambrosio |
Publisher |
: Springer |
Total Pages |
: 234 |
Release |
: 2019-01-10 |
ISBN-10 |
: 9788876426513 |
ISBN-13 |
: 8876426515 |
Rating |
: 4/5 (13 Downloads) |
Synopsis Lectures on Elliptic Partial Differential Equations by : Luigi Ambrosio
The book originates from the Elliptic PDE course given by the first author at the Scuola Normale Superiore in recent years. It covers the most classical aspects of the theory of Elliptic Partial Differential Equations and Calculus of Variations, including also more recent developments on partial regularity for systems and the theory of viscosity solutions.
Author |
: Qing Han |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 161 |
Release |
: 2011 |
ISBN-10 |
: 9780821853139 |
ISBN-13 |
: 0821853139 |
Rating |
: 4/5 (39 Downloads) |
Synopsis Elliptic Partial Differential Equations by : Qing Han
This volume is based on PDE courses given by the authors at the Courant Institute and at the University of Notre Dame, Indiana. Presented are basic methods for obtaining various a priori estimates for second-order equations of elliptic type with particular emphasis on maximal principles, Harnack inequalities, and their applications. The equations considered in the book are linear; however, the presented methods also apply to nonlinear problems.
Author |
: D. Gilbarg |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 409 |
Release |
: 2013-03-09 |
ISBN-10 |
: 9783642963797 |
ISBN-13 |
: 364296379X |
Rating |
: 4/5 (97 Downloads) |
Synopsis Elliptic Partial Differential Equations of Second Order by : D. Gilbarg
This volume is intended as an essentially self contained exposition of portions of the theory of second order quasilinear elliptic partial differential equations, with emphasis on the Dirichlet problem in bounded domains. It grew out of lecture notes for graduate courses by the authors at Stanford University, the final material extending well beyond the scope of these courses. By including preparatory chapters on topics such as potential theory and functional analysis, we have attempted to make the work accessible to a broad spectrum of readers. Above all, we hope the readers of this book will gain an appreciation of the multitude of ingenious barehanded techniques that have been developed in the study of elliptic equations and have become part of the repertoire of analysis. Many individuals have assisted us during the evolution of this work over the past several years. In particular, we are grateful for the valuable discussions with L. M. Simon and his contributions in Sections 15.4 to 15.8; for the helpful comments and corrections of J. M. Cross, A. S. Geue, J. Nash, P. Trudinger and B. Turkington; for the contributions of G. Williams in Section 10.5 and of A. S. Geue in Section 10.6; and for the impeccably typed manuscript which resulted from the dedicated efforts oflsolde Field at Stanford and Anna Zalucki at Canberra. The research of the authors connected with this volume was supported in part by the National Science Foundation.
Author |
: Lucio Boccardo |
Publisher |
: Walter de Gruyter |
Total Pages |
: 204 |
Release |
: 2013-10-29 |
ISBN-10 |
: 9783110315424 |
ISBN-13 |
: 3110315424 |
Rating |
: 4/5 (24 Downloads) |
Synopsis Elliptic Partial Differential Equations by : Lucio Boccardo
Elliptic partial differential equations is one of the main and most active areas in mathematics. This book is devoted to the study of linear and nonlinear elliptic problems in divergence form, with the aim of providing classical results, as well as more recent developments about distributional solutions. For this reason this monograph is addressed to master's students, PhD students and anyone who wants to begin research in this mathematical field.
Author |
: Jan Malý |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 309 |
Release |
: 1997 |
ISBN-10 |
: 9780821803356 |
ISBN-13 |
: 0821803352 |
Rating |
: 4/5 (56 Downloads) |
Synopsis Fine Regularity of Solutions of Elliptic Partial Differential Equations by : Jan Malý
The primary objective of this monograph is to give a comprehensive exposition of results surrounding the work of the authors concerning boundary regularity of weak solutions of second order elliptic quasilinear equations in divergence form. The book also contains a complete development of regularity of solutions of variational inequalities, including the double obstacle problem, where the obstacles are allowed to be discontinuous. The book concludes with a chapter devoted to the existence theory thus providing the reader with a complete treatment of the subject ranging from regularity of weak solutions to the existence of weak solutions.
Author |
: Michel Chipot |
Publisher |
: Springer Nature |
Total Pages |
: 393 |
Release |
: |
ISBN-10 |
: 9783031541230 |
ISBN-13 |
: 3031541235 |
Rating |
: 4/5 (30 Downloads) |
Synopsis Elliptic Equations: An Introductory Course by : Michel Chipot
Author |
: Francisco J. Sayas |
Publisher |
: CRC Press |
Total Pages |
: 515 |
Release |
: 2019-01-16 |
ISBN-10 |
: 9780429016202 |
ISBN-13 |
: 0429016204 |
Rating |
: 4/5 (02 Downloads) |
Synopsis Variational Techniques for Elliptic Partial Differential Equations by : Francisco J. Sayas
Variational Techniques for Elliptic Partial Differential Equations, intended for graduate students studying applied math, analysis, and/or numerical analysis, provides the necessary tools to understand the structure and solvability of elliptic partial differential equations. Beginning with the necessary definitions and theorems from distribution theory, the book gradually builds the functional analytic framework for studying elliptic PDE using variational formulations. Rather than introducing all of the prerequisites in the first chapters, it is the introduction of new problems which motivates the development of the associated analytical tools. In this way the student who is encountering this material for the first time will be aware of exactly what theory is needed, and for which problems. Features A detailed and rigorous development of the theory of Sobolev spaces on Lipschitz domains, including the trace operator and the normal component of vector fields An integration of functional analysis concepts involving Hilbert spaces and the problems which can be solved with these concepts, rather than separating the two Introduction to the analytical tools needed for physical problems of interest like time-harmonic waves, Stokes and Darcy flow, surface differential equations, Maxwell cavity problems, etc. A variety of problems which serve to reinforce and expand upon the material in each chapter, including applications in fluid and solid mechanics
Author |
: C. Miranda |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 384 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783642877735 |
ISBN-13 |
: 3642877737 |
Rating |
: 4/5 (35 Downloads) |
Synopsis Partial Differential Equations of Elliptic Type by : C. Miranda
In the theory of partial differential equations, the study of elliptic equations occupies a preeminent position, both because of the importance which it assumes for various questions in mathematical physics, and because of the completeness of the results obtained up to the present time. In spite of this, even in the more classical treatises on analysis the theory of elliptic equations has been considered and illustrated only from particular points of view, while the only expositions of the whole theory, the extremely valuable ones by LICHTENSTEIN and AscoLI, have the charac ter of encyclopedia articles and date back to many years ago. Consequently it seemed to me that it would be of some interest to try to give an up-to-date picture of the present state of research in this area in a monograph which, without attaining the dimensions of a treatise, would nevertheless be sufficiently extensive to allow the expo sition, in some cases in summary form, of the various techniques used in the study of these equations.
Author |
: Stefan Bergman |
Publisher |
: Courier Corporation |
Total Pages |
: 450 |
Release |
: 2005-09-01 |
ISBN-10 |
: 9780486445533 |
ISBN-13 |
: 0486445534 |
Rating |
: 4/5 (33 Downloads) |
Synopsis Kernel Functions and Elliptic Differential Equations in Mathematical Physics by : Stefan Bergman
This text focuses on the theory of boundary value problems in partial differential equations, which plays a central role in various fields of pure and applied mathematics, theoretical physics, and engineering. Geared toward upper-level undergraduates and graduate students, it discusses a portion of the theory from a unifying point of view and provides a systematic and self-contained introduction to each branch of the applications it employs.