Geometric Applications of Fourier Series and Spherical Harmonics

Geometric Applications of Fourier Series and Spherical Harmonics
Author :
Publisher : Cambridge University Press
Total Pages : 343
Release :
ISBN-10 : 9780521473187
ISBN-13 : 0521473187
Rating : 4/5 (87 Downloads)

Synopsis Geometric Applications of Fourier Series and Spherical Harmonics by : H. Groemer

This book provides a comprehensive presentation of geometric results, primarily from the theory of convex sets, that have been proved by the use of Fourier series or spherical harmonics. An important feature of the book is that all necessary tools from the classical theory of spherical harmonics are presented with full proofs. These tools are used to prove geometric inequalities, stability results, uniqueness results for projections and intersections by hyperplanes or half-spaces and characterisations of rotors in convex polytopes. Again, full proofs are given. To make the treatment as self-contained as possible the book begins with background material in analysis and the geometry of convex sets. This treatise will be welcomed both as an introduction to the subject and as a reference book for pure and applied mathematics.

Geometric Applications of Fourier Series and Spherical Harmonics

Geometric Applications of Fourier Series and Spherical Harmonics
Author :
Publisher :
Total Pages : 343
Release :
ISBN-10 : 110708881X
ISBN-13 : 9781107088818
Rating : 4/5 (1X Downloads)

Synopsis Geometric Applications of Fourier Series and Spherical Harmonics by : H. Groemer

A full exposition of the classical theory of spherical harmonics and their use in proving stability results.

Geometric Applications of Fourier Series and Spherical Harmonics

Geometric Applications of Fourier Series and Spherical Harmonics
Author :
Publisher : Cambridge University Press
Total Pages : 0
Release :
ISBN-10 : 0521119650
ISBN-13 : 9780521119658
Rating : 4/5 (50 Downloads)

Synopsis Geometric Applications of Fourier Series and Spherical Harmonics by : Helmut Groemer

This is the first comprehensive exposition of the application of spherical harmonics to prove geometric results. The author presents all the necessary tools from classical theory of spherical harmonics with full proofs. Groemer uses these tools to prove geometric inequalities, uniqueness results for projections and intersection by planes or half-spaces, stability results, and characterizations of convex bodies of a particular type, such as rotors in convex polytopes. Results arising from these analytical techniques have proved useful in many applications, particularly those related to stereology. To make the treatment as self-contained as possible the book begins with background material in analysis and the geometry of convex sets.

Approximation Theory and Harmonic Analysis on Spheres and Balls

Approximation Theory and Harmonic Analysis on Spheres and Balls
Author :
Publisher : Springer Science & Business Media
Total Pages : 447
Release :
ISBN-10 : 9781461466604
ISBN-13 : 1461466601
Rating : 4/5 (04 Downloads)

Synopsis Approximation Theory and Harmonic Analysis on Spheres and Balls by : Feng Dai

This monograph records progress in approximation theory and harmonic analysis on balls and spheres, and presents contemporary material that will be useful to analysts in this area. While the first part of the book contains mainstream material on the subject, the second and the third parts deal with more specialized topics, such as analysis in weight spaces with reflection invariant weight functions, and analysis on balls and simplexes. The last part of the book features several applications, including cubature formulas, distribution of points on the sphere, and the reconstruction algorithm in computerized tomography. This book is directed at researchers and advanced graduate students in analysis. Mathematicians who are familiar with Fourier analysis and harmonic analysis will understand many of the concepts that appear in this manuscript: spherical harmonics, the Hardy-Littlewood maximal function, the Marcinkiewicz multiplier theorem, the Riesz transform, and doubling weights are all familiar tools to researchers in this area.

Handbook of Convex Geometry

Handbook of Convex Geometry
Author :
Publisher : Elsevier
Total Pages : 769
Release :
ISBN-10 : 9780080934402
ISBN-13 : 0080934404
Rating : 4/5 (02 Downloads)

Synopsis Handbook of Convex Geometry by : Bozzano G Luisa

Handbook of Convex Geometry, Volume B offers a survey of convex geometry and its many ramifications and connections with other fields of mathematics, including convexity, lattices, crystallography, and convex functions. The selection first offers information on the geometry of numbers, lattice points, and packing and covering with convex sets. Discussions focus on packing in non-Euclidean spaces, problems in the Euclidean plane, general convex bodies, computational complexity of lattice point problem, centrally symmetric convex bodies, reduction theory, and lattices and the space of lattices. The text then examines finite packing and covering and tilings, including plane tilings, monohedral tilings, bin packing, and sausage problems. The manuscript takes a look at valuations and dissections, geometric crystallography, convexity and differential geometry, and convex functions. Topics include differentiability, inequalities, uniqueness theorems for convex hypersurfaces, mixed discriminants and mixed volumes, differential geometric characterization of convexity, reduction of quadratic forms, and finite groups of symmetry operations. The selection is a dependable source of data for mathematicians and researchers interested in convex geometry.

Abstract Regular Polytopes

Abstract Regular Polytopes
Author :
Publisher : Cambridge University Press
Total Pages : 580
Release :
ISBN-10 : 0521814960
ISBN-13 : 9780521814966
Rating : 4/5 (60 Downloads)

Synopsis Abstract Regular Polytopes by : Peter McMullen

Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. They are highly symmetric combinatorial structures with distinctive geometric, algebraic or topological properties; in many ways more fascinating than traditional regular polytopes and tessellations. The rapid development of the subject in the past 20 years has resulted in a rich new theory, featuring an attractive interplay of mathematical areas, including geometry, combinatorics, group theory and topology. Abstract regular polytopes and their groups provide an appealing new approach to understanding geometric and combinatorial symmetry. This is the first comprehensive up-to-date account of the subject and its ramifications, and meets a critical need for such a text, because no book has been published in this area of classical and modern discrete geometry since Coxeter's Regular Polytopes (1948) and Regular Complex Polytopes (1974). The book should be of interest to researchers and graduate students in discrete geometry, combinatorics and group theory.

Oriented Matroids

Oriented Matroids
Author :
Publisher : Cambridge University Press
Total Pages : 564
Release :
ISBN-10 : 9780521777506
ISBN-13 : 052177750X
Rating : 4/5 (06 Downloads)

Synopsis Oriented Matroids by : Anders Björner

First comprehensive, accessible account; second edition has expanded bibliography and a new appendix surveying recent research.

Quantum Field Theory for Mathematicians

Quantum Field Theory for Mathematicians
Author :
Publisher : Cambridge University Press
Total Pages : 720
Release :
ISBN-10 : 9780521632652
ISBN-13 : 052163265X
Rating : 4/5 (52 Downloads)

Synopsis Quantum Field Theory for Mathematicians by : Robin Ticciati

This should be a useful reference for anybody with an interest in quantum theory.

An Algebraic Introduction to K-Theory

An Algebraic Introduction to K-Theory
Author :
Publisher : Cambridge University Press
Total Pages : 704
Release :
ISBN-10 : 9781107079441
ISBN-13 : 1107079446
Rating : 4/5 (41 Downloads)

Synopsis An Algebraic Introduction to K-Theory by : Bruce A. Magurn

This is an introduction to algebraic K-theory with no prerequisite beyond a first semester of algebra (including Galois theory and modules over a principal ideal domain). The presentation is almost entirely self-contained, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry. No experience with analysis, geometry, number theory or topology is assumed. Within the context of linear algebra, K-theory organises and clarifies the relations among ideal class groups, group representations, quadratic forms, dimensions of a ring, determinants, quadratic reciprocity and Brauer groups of fields. By including introductions to standard algebra topics (tensor products, localisation, Jacobson radical, chain conditions, Dedekind domains, semi-simple rings, exterior algebras), the author makes algebraic K-theory accessible to first-year graduate students and other mathematically sophisticated readers. Even if your algebra is rusty, you can read this book; the necessary background is here, with proofs.

Stochastic Integration with Jumps

Stochastic Integration with Jumps
Author :
Publisher : Cambridge University Press
Total Pages : 517
Release :
ISBN-10 : 9780521811293
ISBN-13 : 0521811295
Rating : 4/5 (93 Downloads)

Synopsis Stochastic Integration with Jumps by : Klaus Bichteler

The complete theory of stochastic differential equations driven by jumps, their stability, and numerical approximation theories.