Handbook Of Convex Geometry
Download Handbook Of Convex Geometry full books in PDF, epub, and Kindle. Read online free Handbook Of Convex Geometry ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Bozzano G Luisa |
Publisher |
: Elsevier |
Total Pages |
: 769 |
Release |
: 2014-06-28 |
ISBN-10 |
: 9780080934402 |
ISBN-13 |
: 0080934404 |
Rating |
: 4/5 (02 Downloads) |
Synopsis Handbook of Convex Geometry by : Bozzano G Luisa
Handbook of Convex Geometry, Volume B offers a survey of convex geometry and its many ramifications and connections with other fields of mathematics, including convexity, lattices, crystallography, and convex functions. The selection first offers information on the geometry of numbers, lattice points, and packing and covering with convex sets. Discussions focus on packing in non-Euclidean spaces, problems in the Euclidean plane, general convex bodies, computational complexity of lattice point problem, centrally symmetric convex bodies, reduction theory, and lattices and the space of lattices. The text then examines finite packing and covering and tilings, including plane tilings, monohedral tilings, bin packing, and sausage problems. The manuscript takes a look at valuations and dissections, geometric crystallography, convexity and differential geometry, and convex functions. Topics include differentiability, inequalities, uniqueness theorems for convex hypersurfaces, mixed discriminants and mixed volumes, differential geometric characterization of convexity, reduction of quadratic forms, and finite groups of symmetry operations. The selection is a dependable source of data for mathematicians and researchers interested in convex geometry.
Author |
: Bozzano G Luisa |
Publisher |
: Elsevier |
Total Pages |
: 803 |
Release |
: 2014-06-28 |
ISBN-10 |
: 9780080934396 |
ISBN-13 |
: 0080934390 |
Rating |
: 4/5 (96 Downloads) |
Synopsis Handbook of Convex Geometry by : Bozzano G Luisa
Handbook of Convex Geometry, Volume A offers a survey of convex geometry and its many ramifications and relations with other areas of mathematics, including convexity, geometric inequalities, and convex sets. The selection first offers information on the history of convexity, characterizations of convex sets, and mixed volumes. Topics include elementary convexity, equality in the Aleksandrov-Fenchel inequality, mixed surface area measures, characteristic properties of convex sets in analysis and differential geometry, and extensions of the notion of a convex set. The text then reviews the standard isoperimetric theorem and stability of geometric inequalities. The manuscript takes a look at selected affine isoperimetric inequalities, extremum problems for convex discs and polyhedra, and rigidity. Discussions focus on include infinitesimal and static rigidity related to surfaces, isoperimetric problem for convex polyhedral, bounds for the volume of a convex polyhedron, curvature image inequality, Busemann intersection inequality and its relatives, and Petty projection inequality. The book then tackles geometric algorithms, convexity and discrete optimization, mathematical programming and convex geometry, and the combinatorial aspects of convex polytopes. The selection is a valuable source of data for mathematicians and researchers interested in convex geometry.
Author |
: Peter M. Gruber |
Publisher |
: North Holland |
Total Pages |
: 774 |
Release |
: 1993-08-24 |
ISBN-10 |
: UOM:39015059097884 |
ISBN-13 |
: |
Rating |
: 4/5 (84 Downloads) |
Synopsis Handbook of Convex Geometry by : Peter M. Gruber
Handbook of Convex Geometry, Volume B offers a survey of convex geometry and its many ramifications and connections with other fields of mathematics, including convexity, lattices, crystallography, and convex functions. The selection first offers information on the geometry of numbers, lattice points, and packing and covering with convex sets. Discussions focus on packing in non-Euclidean spaces, problems in the Euclidean plane, general convex bodies, computational complexity of lattice point problem, centrally symmetric convex bodies, reduction theory, and lattices and the space of lattices. The text then examines finite packing and covering and tilings, including plane tilings, monohedral tilings, bin packing, and sausage problems. The manuscript takes a look at valuations and dissections, geometric crystallography, convexity and differential geometry, and convex functions. Topics include differentiability, inequalities, uniqueness theorems for convex hypersurfaces, mixed discriminants and mixed volumes, differential geometric characterization of convexity, reduction of quadratic forms, and finite groups of symmetry operations. The selection is a dependable source of data for mathematicians and researchers interested in convex geometry.
Author |
: |
Publisher |
: Elsevier |
Total Pages |
: 1017 |
Release |
: 2001-08-15 |
ISBN-10 |
: 9780080532806 |
ISBN-13 |
: 0080532802 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Handbook of the Geometry of Banach Spaces by :
The Handbook presents an overview of most aspects of modernBanach space theory and its applications. The up-to-date surveys, authored by leading research workers in the area, are written to be accessible to a wide audience. In addition to presenting the state of the art of Banach space theory, the surveys discuss the relation of the subject with such areas as harmonic analysis, complex analysis, classical convexity, probability theory, operator theory, combinatorics, logic, geometric measure theory, and partial differential equations. The Handbook begins with a chapter on basic concepts in Banachspace theory which contains all the background needed for reading any other chapter in the Handbook. Each of the twenty one articles in this volume after the basic concepts chapter is devoted to one specific direction of Banach space theory or its applications. Each article contains a motivated introduction as well as an exposition of the main results, methods, and open problems in its specific direction. Most have an extensive bibliography. Many articles contain new proofs of known results as well as expositions of proofs which are hard to locate in the literature or are only outlined in the original research papers. As well as being valuable to experienced researchers in Banach space theory, the Handbook should be an outstanding source for inspiration and information to graduate students and beginning researchers. The Handbook will be useful for mathematicians who want to get an idea of the various developments in Banach space theory.
Author |
: Peter M. Gruber |
Publisher |
: North Holland |
Total Pages |
: 0 |
Release |
: 2006-02-02 |
ISBN-10 |
: 0444895981 |
ISBN-13 |
: 9780444895981 |
Rating |
: 4/5 (81 Downloads) |
Synopsis Handbook of Convex Geometry by : Peter M. Gruber
Author |
: Csaba D. Toth |
Publisher |
: CRC Press |
Total Pages |
: 2354 |
Release |
: 2017-11-22 |
ISBN-10 |
: 9781351645911 |
ISBN-13 |
: 1351645919 |
Rating |
: 4/5 (11 Downloads) |
Synopsis Handbook of Discrete and Computational Geometry by : Csaba D. Toth
The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.
Author |
: Peter M. Gruber |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 590 |
Release |
: 2007-05-17 |
ISBN-10 |
: 9783540711339 |
ISBN-13 |
: 3540711333 |
Rating |
: 4/5 (39 Downloads) |
Synopsis Convex and Discrete Geometry by : Peter M. Gruber
Convex and Discrete Geometry is an area of mathematics situated between analysis, geometry and discrete mathematics with numerous relations to other subdisciplines. This book provides a comprehensive overview of major results, methods and ideas of convex and discrete geometry and its applications. Besides being a graduate-level introduction to the field, it is a practical source of information and orientation for convex geometers, and useful to people working in the applied fields.
Author |
: Grigoriy Blekherman |
Publisher |
: SIAM |
Total Pages |
: 487 |
Release |
: 2013-03-21 |
ISBN-10 |
: 9781611972283 |
ISBN-13 |
: 1611972280 |
Rating |
: 4/5 (83 Downloads) |
Synopsis Semidefinite Optimization and Convex Algebraic Geometry by : Grigoriy Blekherman
An accessible introduction to convex algebraic geometry and semidefinite optimization. For graduate students and researchers in mathematics and computer science.
Author |
: Jiri Matousek |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 491 |
Release |
: 2013-12-01 |
ISBN-10 |
: 9781461300397 |
ISBN-13 |
: 1461300398 |
Rating |
: 4/5 (97 Downloads) |
Synopsis Lectures on Discrete Geometry by : Jiri Matousek
The main topics in this introductory text to discrete geometry include basics on convex sets, convex polytopes and hyperplane arrangements, combinatorial complexity of geometric configurations, intersection patterns and transversals of convex sets, geometric Ramsey-type results, and embeddings of finite metric spaces into normed spaces. In each area, the text explains several key results and methods.
Author |
: Satyan L. Devadoss |
Publisher |
: Princeton University Press |
Total Pages |
: 270 |
Release |
: 2011-04-11 |
ISBN-10 |
: 9781400838981 |
ISBN-13 |
: 1400838983 |
Rating |
: 4/5 (81 Downloads) |
Synopsis Discrete and Computational Geometry by : Satyan L. Devadoss
An essential introduction to discrete and computational geometry Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also features numerous exercises and unsolved problems. The essential introduction to discrete and computational geometry Covers traditional topics as well as new and advanced material Features numerous full-color illustrations, exercises, and unsolved problems Suitable for sophomores in mathematics, computer science, engineering, or physics Rigorous but accessible An online solutions manual is available (for teachers only)