Handbook Of The Geometry Of Banach Spaces
Download Handbook Of The Geometry Of Banach Spaces full books in PDF, epub, and Kindle. Read online free Handbook Of The Geometry Of Banach Spaces ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: |
Publisher |
: Elsevier |
Total Pages |
: 1017 |
Release |
: 2001-08-15 |
ISBN-10 |
: 9780080532806 |
ISBN-13 |
: 0080532802 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Handbook of the Geometry of Banach Spaces by :
The Handbook presents an overview of most aspects of modernBanach space theory and its applications. The up-to-date surveys, authored by leading research workers in the area, are written to be accessible to a wide audience. In addition to presenting the state of the art of Banach space theory, the surveys discuss the relation of the subject with such areas as harmonic analysis, complex analysis, classical convexity, probability theory, operator theory, combinatorics, logic, geometric measure theory, and partial differential equations. The Handbook begins with a chapter on basic concepts in Banachspace theory which contains all the background needed for reading any other chapter in the Handbook. Each of the twenty one articles in this volume after the basic concepts chapter is devoted to one specific direction of Banach space theory or its applications. Each article contains a motivated introduction as well as an exposition of the main results, methods, and open problems in its specific direction. Most have an extensive bibliography. Many articles contain new proofs of known results as well as expositions of proofs which are hard to locate in the literature or are only outlined in the original research papers. As well as being valuable to experienced researchers in Banach space theory, the Handbook should be an outstanding source for inspiration and information to graduate students and beginning researchers. The Handbook will be useful for mathematicians who want to get an idea of the various developments in Banach space theory.
Author |
: |
Publisher |
: Elsevier |
Total Pages |
: 873 |
Release |
: 2003-05-06 |
ISBN-10 |
: 9780080533506 |
ISBN-13 |
: 0080533507 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Handbook of the Geometry of Banach Spaces by :
Handbook of the Geometry of Banach Spaces
Author |
: William B. Johnson |
Publisher |
: Elsevier |
Total Pages |
: 880 |
Release |
: 2001 |
ISBN-10 |
: 0444513051 |
ISBN-13 |
: 9780444513052 |
Rating |
: 4/5 (51 Downloads) |
Synopsis Handbook of the Geometry of Banach Spaces by : William B. Johnson
The Handbook presents an overview of most aspects of modern Banach space theory and its applications. The up-to-date surveys, authored by leading research workers in the area, are written to be accessible to a wide audience. In addition to presenting the state of the art of Banach space theory, the surveys discuss the relation of the subject with such areas as harmonic analysis, complex analysis, classical convexity, probability theory, operator theory, combinatorics, logic, geometric measure theory, and partial differential equations. The Handbook begins with a chapter on basic concepts in Banach space theory which contains all the background needed for reading any other chapter in the Handbook. Each of the twenty one articles in this volume after the basic concepts chapter is devoted to one specific direction of Banach space theory or its applications. Each article contains a motivated introduction as well as an exposition of the main results, methods, and open problems in its specific direction. Most have an extensive bibliography. Many articles contain new proofs of known results as well as expositions of proofs which are hard to locate in the literature or are only outlined in the original research papers. As well as being valuable to experienced researchers in Banach space theory, the Handbook should be an outstanding source for inspiration and information to graduate students and beginning researchers. The Handbook will be useful for mathematicians who want to get an idea of the various developments in Banach space theory.
Author |
: |
Publisher |
: |
Total Pages |
: |
Release |
: |
ISBN-10 |
: OCLC:944497191 |
ISBN-13 |
: |
Rating |
: 4/5 (91 Downloads) |
Synopsis Handbook of the Geometry of Banach Spaces by :
Author |
: W.A. Kirk |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 702 |
Release |
: 2013-04-17 |
ISBN-10 |
: 9789401717489 |
ISBN-13 |
: 9401717486 |
Rating |
: 4/5 (89 Downloads) |
Synopsis Handbook of Metric Fixed Point Theory by : W.A. Kirk
Metric fixed point theory encompasses the branch of fixed point theory which metric conditions on the underlying space and/or on the mappings play a fundamental role. In some sense the theory is a far-reaching outgrowth of Banach's contraction mapping principle. A natural extension of the study of contractions is the limiting case when the Lipschitz constant is allowed to equal one. Such mappings are called nonexpansive. Nonexpansive mappings arise in a variety of natural ways, for example in the study of holomorphic mappings and hyperconvex metric spaces. Because most of the spaces studied in analysis share many algebraic and topological properties as well as metric properties, there is no clear line separating metric fixed point theory from the topological or set-theoretic branch of the theory. Also, because of its metric underpinnings, metric fixed point theory has provided the motivation for the study of many geometric properties of Banach spaces. The contents of this Handbook reflect all of these facts. The purpose of the Handbook is to provide a primary resource for anyone interested in fixed point theory with a metric flavor. The goal is to provide information for those wishing to find results that might apply to their own work and for those wishing to obtain a deeper understanding of the theory. The book should be of interest to a wide range of researchers in mathematical analysis as well as to those whose primary interest is the study of fixed point theory and the underlying spaces. The level of exposition is directed to a wide audience, including students and established researchers.
Author |
: Eric Schechter |
Publisher |
: Academic Press |
Total Pages |
: 907 |
Release |
: 1996-10-24 |
ISBN-10 |
: 9780080532998 |
ISBN-13 |
: 0080532993 |
Rating |
: 4/5 (98 Downloads) |
Synopsis Handbook of Analysis and Its Foundations by : Eric Schechter
Handbook of Analysis and Its Foundations is a self-contained and unified handbook on mathematical analysis and its foundations. Intended as a self-study guide for advanced undergraduates and beginning graduatestudents in mathematics and a reference for more advanced mathematicians, this highly readable book provides broader coverage than competing texts in the area. Handbook of Analysis and Its Foundations provides an introduction to a wide range of topics, including: algebra; topology; normed spaces; integration theory; topological vector spaces; and differential equations. The author effectively demonstrates the relationships between these topics and includes a few chapters on set theory and logic to explain the lack of examples for classical pathological objects whose existence proofs are not constructive. More complete than any other book on the subject, students will find this to be an invaluable handbook. Covers some hard-to-find results including: Bessagas and Meyers converses of the Contraction Fixed Point Theorem Redefinition of subnets by Aarnes and Andenaes Ghermans characterization of topological convergences Neumanns nonlinear Closed Graph Theorem van Maarens geometry-free version of Sperners Lemma Includes a few advanced topics in functional analysis Features all areas of the foundations of analysis except geometry Combines material usually found in many different sources, making this unified treatment more convenient for the user Has its own webpage: http://math.vanderbilt.edu/
Author |
: Kazimierz Goebel |
Publisher |
: Cambridge University Press |
Total Pages |
: 258 |
Release |
: 1990 |
ISBN-10 |
: 0521382890 |
ISBN-13 |
: 9780521382892 |
Rating |
: 4/5 (90 Downloads) |
Synopsis Topics in Metric Fixed Point Theory by : Kazimierz Goebel
Metric Fixed Point Theory has proved a flourishing area of research for many mathematicians. This book aims to offer the mathematical community an accessible, self-contained account which can be used as an introduction to the subject and its development. It will be understandable to a wide audience, including non-specialists, and provide a source of examples, references and new approaches for those currently working in the subject.
Author |
: Gilles Pisier |
Publisher |
: Cambridge University Press |
Total Pages |
: 591 |
Release |
: 2016-06-06 |
ISBN-10 |
: 9781107137240 |
ISBN-13 |
: 1107137241 |
Rating |
: 4/5 (40 Downloads) |
Synopsis Martingales in Banach Spaces by : Gilles Pisier
This book focuses on applications of martingales to the geometry of Banach spaces, and is accessible to graduate students.
Author |
: Benavides Tomas Dominguez |
Publisher |
: World Scientific |
Total Pages |
: 209 |
Release |
: 2008 |
ISBN-10 |
: 9789812818454 |
ISBN-13 |
: 9812818456 |
Rating |
: 4/5 (54 Downloads) |
Synopsis Advanced Courses of Mathematical Analysis III by : Benavides Tomas Dominguez
This volume comprises a collection of articles by leading researchers in mathematical analysis. It provides the reader with an extensive overview of the present-day research in different areas of mathematical analysis (complex variable, harmonic analysis, real analysis and functional analysis) that holds great promise for current and future developments. These review articles are highly useful for those who want to learn about these topics, as many results scattered in the literature are reflected through the many separate papers featured herein.
Author |
: Richard M. Aron |
Publisher |
: Walter de Gruyter GmbH & Co KG |
Total Pages |
: 364 |
Release |
: 2020-08-10 |
ISBN-10 |
: 9783110656756 |
ISBN-13 |
: 3110656752 |
Rating |
: 4/5 (56 Downloads) |
Synopsis The Mathematical Legacy of Victor Lomonosov by : Richard M. Aron
The fundamental contributions made by the late Victor Lomonosov in several areas of analysis are revisited in this book, in particular, by presenting new results and future directions from world-recognized specialists in the field. The invariant subspace problem, Burnside’s theorem, and the Bishop-Phelps theorem are discussed in detail. This volume is an essential reference to both researchers and graduate students in mathematical analysis.