An Algebraic Introduction to K-Theory

An Algebraic Introduction to K-Theory
Author :
Publisher : Cambridge University Press
Total Pages : 704
Release :
ISBN-10 : 9781107079441
ISBN-13 : 1107079446
Rating : 4/5 (41 Downloads)

Synopsis An Algebraic Introduction to K-Theory by : Bruce A. Magurn

This is an introduction to algebraic K-theory with no prerequisite beyond a first semester of algebra (including Galois theory and modules over a principal ideal domain). The presentation is almost entirely self-contained, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry. No experience with analysis, geometry, number theory or topology is assumed. Within the context of linear algebra, K-theory organises and clarifies the relations among ideal class groups, group representations, quadratic forms, dimensions of a ring, determinants, quadratic reciprocity and Brauer groups of fields. By including introductions to standard algebra topics (tensor products, localisation, Jacobson radical, chain conditions, Dedekind domains, semi-simple rings, exterior algebras), the author makes algebraic K-theory accessible to first-year graduate students and other mathematically sophisticated readers. Even if your algebra is rusty, you can read this book; the necessary background is here, with proofs.

The $K$-book

The $K$-book
Author :
Publisher : American Mathematical Soc.
Total Pages : 634
Release :
ISBN-10 : 9780821891322
ISBN-13 : 0821891324
Rating : 4/5 (22 Downloads)

Synopsis The $K$-book by : Charles A. Weibel

Informally, $K$-theory is a tool for probing the structure of a mathematical object such as a ring or a topological space in terms of suitably parameterized vector spaces and producing important intrinsic invariants which are useful in the study of algebr

An Introduction to K-Theory for C*-Algebras

An Introduction to K-Theory for C*-Algebras
Author :
Publisher : Cambridge University Press
Total Pages : 260
Release :
ISBN-10 : 0521789443
ISBN-13 : 9780521789448
Rating : 4/5 (43 Downloads)

Synopsis An Introduction to K-Theory for C*-Algebras by : M. Rørdam

This book provides a very elementary introduction to K-theory for C*-algebras, and is ideal for beginning graduate students.

Introduction to Algebraic K-theory

Introduction to Algebraic K-theory
Author :
Publisher : Princeton University Press
Total Pages : 204
Release :
ISBN-10 : 0691081018
ISBN-13 : 9780691081014
Rating : 4/5 (18 Downloads)

Synopsis Introduction to Algebraic K-theory by : John Willard Milnor

Algebraic K-theory describes a branch of algebra that centers about two functors. K0 and K1, which assign to each associative ring ∧ an abelian group K0∧ or K1∧ respectively. Professor Milnor sets out, in the present work, to define and study an analogous functor K2, also from associative rings to abelian groups. Just as functors K0 and K1 are important to geometric topologists, K2 is now considered to have similar topological applications. The exposition includes, besides K-theory, a considerable amount of related arithmetic.

Algebraic K-Theory and Its Applications

Algebraic K-Theory and Its Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 404
Release :
ISBN-10 : 9781461243144
ISBN-13 : 1461243149
Rating : 4/5 (44 Downloads)

Synopsis Algebraic K-Theory and Its Applications by : Jonathan Rosenberg

Algebraic K-Theory is crucial in many areas of modern mathematics, especially algebraic topology, number theory, algebraic geometry, and operator theory. This text is designed to help graduate students in other areas learn the basics of K-Theory and get a feel for its many applications. Topics include algebraic topology, homological algebra, algebraic number theory, and an introduction to cyclic homology and its interrelationship with K-Theory.

K-Theory

K-Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 337
Release :
ISBN-10 : 9783540798903
ISBN-13 : 3540798900
Rating : 4/5 (03 Downloads)

Synopsis K-Theory by : Max Karoubi

From the Preface: K-theory was introduced by A. Grothendieck in his formulation of the Riemann- Roch theorem. For each projective algebraic variety, Grothendieck constructed a group from the category of coherent algebraic sheaves, and showed that it had many nice properties. Atiyah and Hirzebruch considered a topological analog defined for any compact space X, a group K{X) constructed from the category of vector bundles on X. It is this ''topological K-theory" that this book will study. Topological K-theory has become an important tool in topology. Using K- theory, Adams and Atiyah were able to give a simple proof that the only spheres which can be provided with H-space structures are S1, S3 and S7. Moreover, it is possible to derive a substantial part of stable homotopy theory from K-theory. The purpose of this book is to provide advanced students and mathematicians in other fields with the fundamental material in this subject. In addition, several applications of the type described above are included. In general we have tried to make this book self-contained, beginning with elementary concepts wherever possible; however, we assume that the reader is familiar with the basic definitions of homotopy theory: homotopy classes of maps and homotopy groups.Thus this book might be regarded as a fairly self-contained introduction to a "generalized cohomology theory".

Algebraic K-Theory

Algebraic K-Theory
Author :
Publisher : Springer
Total Pages : 269
Release :
ISBN-10 : 9783540359173
ISBN-13 : 3540359176
Rating : 4/5 (73 Downloads)

Synopsis Algebraic K-Theory by : Richard G. Swan

From the Introduction: "These notes are taken from a course on algebraic K-theory [given] at the University of Chicago in 1967. They also include some material from an earlier course on abelian categories, elaborating certain parts of Gabriel's thesis. The results on K-theory are mostly of a very general nature."

Algebraic K-Theory

Algebraic K-Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 328
Release :
ISBN-10 : 9781489967350
ISBN-13 : 1489967354
Rating : 4/5 (50 Downloads)

Synopsis Algebraic K-Theory by : Vasudevan Srinivas

The Local Structure of Algebraic K-Theory

The Local Structure of Algebraic K-Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 447
Release :
ISBN-10 : 9781447143932
ISBN-13 : 1447143930
Rating : 4/5 (32 Downloads)

Synopsis The Local Structure of Algebraic K-Theory by : Bjørn Ian Dundas

Algebraic K-theory encodes important invariants for several mathematical disciplines, spanning from geometric topology and functional analysis to number theory and algebraic geometry. As is commonly encountered, this powerful mathematical object is very hard to calculate. Apart from Quillen's calculations of finite fields and Suslin's calculation of algebraically closed fields, few complete calculations were available before the discovery of homological invariants offered by motivic cohomology and topological cyclic homology. This book covers the connection between algebraic K-theory and Bökstedt, Hsiang and Madsen's topological cyclic homology and proves that the difference between the theories are ‘locally constant’. The usefulness of this theorem stems from being more accessible for calculations than K-theory, and hence a single calculation of K-theory can be used with homological calculations to obtain a host of ‘nearby’ calculations in K-theory. For instance, Quillen's calculation of the K-theory of finite fields gives rise to Hesselholt and Madsen's calculations for local fields, and Voevodsky's calculations for the integers give insight into the diffeomorphisms of manifolds. In addition to the proof of the full integral version of the local correspondence between K-theory and topological cyclic homology, the book provides an introduction to the necessary background in algebraic K-theory and highly structured homotopy theory; collecting all necessary tools into one common framework. It relies on simplicial techniques, and contains an appendix summarizing the methods widely used in the field. The book is intended for graduate students and scientists interested in algebraic K-theory, and presupposes a basic knowledge of algebraic topology.

K-Theory for Operator Algebras

K-Theory for Operator Algebras
Author :
Publisher : Springer Science & Business Media
Total Pages : 347
Release :
ISBN-10 : 9781461395720
ISBN-13 : 1461395720
Rating : 4/5 (20 Downloads)

Synopsis K-Theory for Operator Algebras by : Bruce Blackadar

K -Theory has revolutionized the study of operator algebras in the last few years. As the primary component of the subject of "noncommutative topol ogy," K -theory has opened vast new vistas within the structure theory of C* algebras, as well as leading to profound and unexpected applications of opera tor algebras to problems in geometry and topology. As a result, many topolo gists and operator algebraists have feverishly begun trying to learn each others' subjects, and it appears certain that these two branches of mathematics have become deeply and permanently intertwined. Despite the fact that the whole subject is only about a decade old, operator K -theory has now reached a state of relative stability. While there will undoubtedly be many more revolutionary developments and applications in the future, it appears the basic theory has more or less reached a "final form." But because of the newness of the theory, there has so far been no comprehensive treatment of the subject. It is the ambitious goal of these notes to fill this gap. We will develop the K -theory of Banach algebras, the theory of extensions of C*-algebras, and the operator K -theory of Kasparov from scratch to its most advanced aspects. We will not treat applications in detail; however, we will outline the most striking of the applications to date in a section at the end, as well as mentioning others at suitable points in the text.