The Local Structure of Algebraic K-Theory

The Local Structure of Algebraic K-Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 447
Release :
ISBN-10 : 9781447143932
ISBN-13 : 1447143930
Rating : 4/5 (32 Downloads)

Synopsis The Local Structure of Algebraic K-Theory by : Bjørn Ian Dundas

Algebraic K-theory encodes important invariants for several mathematical disciplines, spanning from geometric topology and functional analysis to number theory and algebraic geometry. As is commonly encountered, this powerful mathematical object is very hard to calculate. Apart from Quillen's calculations of finite fields and Suslin's calculation of algebraically closed fields, few complete calculations were available before the discovery of homological invariants offered by motivic cohomology and topological cyclic homology. This book covers the connection between algebraic K-theory and Bökstedt, Hsiang and Madsen's topological cyclic homology and proves that the difference between the theories are ‘locally constant’. The usefulness of this theorem stems from being more accessible for calculations than K-theory, and hence a single calculation of K-theory can be used with homological calculations to obtain a host of ‘nearby’ calculations in K-theory. For instance, Quillen's calculation of the K-theory of finite fields gives rise to Hesselholt and Madsen's calculations for local fields, and Voevodsky's calculations for the integers give insight into the diffeomorphisms of manifolds. In addition to the proof of the full integral version of the local correspondence between K-theory and topological cyclic homology, the book provides an introduction to the necessary background in algebraic K-theory and highly structured homotopy theory; collecting all necessary tools into one common framework. It relies on simplicial techniques, and contains an appendix summarizing the methods widely used in the field. The book is intended for graduate students and scientists interested in algebraic K-theory, and presupposes a basic knowledge of algebraic topology.

The $K$-book

The $K$-book
Author :
Publisher : American Mathematical Soc.
Total Pages : 634
Release :
ISBN-10 : 9780821891322
ISBN-13 : 0821891324
Rating : 4/5 (22 Downloads)

Synopsis The $K$-book by : Charles A. Weibel

Informally, $K$-theory is a tool for probing the structure of a mathematical object such as a ring or a topological space in terms of suitably parameterized vector spaces and producing important intrinsic invariants which are useful in the study of algebr

Algebraic K-theory And Its Applications - Proceedings Of The School

Algebraic K-theory And Its Applications - Proceedings Of The School
Author :
Publisher : World Scientific
Total Pages : 622
Release :
ISBN-10 : 9789814544795
ISBN-13 : 9814544795
Rating : 4/5 (95 Downloads)

Synopsis Algebraic K-theory And Its Applications - Proceedings Of The School by : Hyman Bass

The Proceedings volume is divided into two parts. The first part consists of lectures given during the first two weeks devoted to a workshop featuring state-of-the-art expositions on 'Overview of Algebraic K-theory' including various constructions, examples, and illustrations from algebra, number theory, algebraic topology, and algebraic/differential geometry; as well as on more concentrated topics involving connections of K-theory with Galois, etale, cyclic, and motivic (co)homologies; values of zeta functions, and Arithmetics of Chow groups and zero cycles. The second part consists of research papers arising from the symposium lectures in the third week.

Advances in Noncommutative Geometry

Advances in Noncommutative Geometry
Author :
Publisher : Springer Nature
Total Pages : 753
Release :
ISBN-10 : 9783030295974
ISBN-13 : 3030295974
Rating : 4/5 (74 Downloads)

Synopsis Advances in Noncommutative Geometry by : Ali Chamseddine

This authoritative volume in honor of Alain Connes, the foremost architect of Noncommutative Geometry, presents the state-of-the art in the subject. The book features an amalgam of invited survey and research papers that will no doubt be accessed, read, and referred to, for several decades to come. The pertinence and potency of new concepts and methods are concretely illustrated in each contribution. Much of the content is a direct outgrowth of the Noncommutative Geometry conference, held March 23–April 7, 2017, in Shanghai, China. The conference covered the latest research and future areas of potential exploration surrounding topology and physics, number theory, as well as index theory and its ramifications in geometry.

Space – Time – Matter

Space – Time – Matter
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 518
Release :
ISBN-10 : 9783110452150
ISBN-13 : 3110452154
Rating : 4/5 (50 Downloads)

Synopsis Space – Time – Matter by : Jochen Brüning

This monograph describes some of the most interesting results obtained by the mathematicians and physicists collaborating in the CRC 647 "Space – Time – Matter", in the years 2005 - 2016. The work presented concerns the mathematical and physical foundations of string and quantum field theory as well as cosmology. Important topics are the spaces and metrics modelling the geometry of matter, and the evolution of these geometries. The partial differential equations governing such structures and their singularities, special solutions and stability properties are discussed in detail. Contents Introduction Algebraic K-theory, assembly maps, controlled algebra, and trace methods Lorentzian manifolds with special holonomy – Constructions and global properties Contributions to the spectral geometry of locally homogeneous spaces On conformally covariant differential operators and spectral theory of the holographic Laplacian Moduli and deformations Vector bundles in algebraic geometry and mathematical physics Dyson–Schwinger equations: Fix-point equations for quantum fields Hidden structure in the form factors ofN = 4 SYM On regulating the AdS superstring Constraints on CFT observables from the bootstrap program Simplifying amplitudes in Maxwell-Einstein and Yang-Mills-Einstein supergravities Yangian symmetry in maximally supersymmetric Yang-Mills theory Wave and Dirac equations on manifolds Geometric analysis on singular spaces Singularities and long-time behavior in nonlinear evolution equations and general relativity

Cyclic Cohomology at 40: Achievements and Future Prospects

Cyclic Cohomology at 40: Achievements and Future Prospects
Author :
Publisher : American Mathematical Society
Total Pages : 592
Release :
ISBN-10 : 9781470469771
ISBN-13 : 1470469774
Rating : 4/5 (71 Downloads)

Synopsis Cyclic Cohomology at 40: Achievements and Future Prospects by : A. Connes

This volume contains the proceedings of the virtual conference on Cyclic Cohomology at 40: Achievements and Future Prospects, held from September 27–October 1, 2021 and hosted by the Fields Institute for Research in Mathematical Sciences, Toronto, ON, Canada. Cyclic cohomology, since its discovery forty years ago in noncommutative differential geometry, has become a fundamental mathematical tool with applications in domains as diverse as analysis, algebraic K-theory, algebraic geometry, arithmetic geometry, solid state physics and quantum field theory. The reader will find survey articles providing a user-friendly introduction to applications of cyclic cohomology in such areas as higher categorical algebra, Hopf algebra symmetries, de Rham-Witt complex, quantum physics, etc., in which cyclic homology plays the role of a unifying theme. The researcher will find frontier research articles in which the cyclic theory provides a computational tool of great relevance. In particular, in analysis cyclic cohomology index formulas capture the higher invariants of manifolds, where the group symmetries are extended to Hopf algebra actions, and where Lie algebra cohomology is greatly extended to the cyclic cohomology of Hopf algebras which becomes the natural receptacle for characteristic classes. In algebraic topology the cyclotomic structure obtained using the cyclic subgroups of the circle action on topological Hochschild homology gives rise to remarkably significant arithmetic structures intimately related to crystalline cohomology through the de Rham-Witt complex, Fontaine's theory and the Fargues-Fontaine curve.

Introduction to Algebraic K-theory

Introduction to Algebraic K-theory
Author :
Publisher : Princeton University Press
Total Pages : 204
Release :
ISBN-10 : 0691081018
ISBN-13 : 9780691081014
Rating : 4/5 (18 Downloads)

Synopsis Introduction to Algebraic K-theory by : John Willard Milnor

Algebraic K-theory describes a branch of algebra that centers about two functors. K0 and K1, which assign to each associative ring ∧ an abelian group K0∧ or K1∧ respectively. Professor Milnor sets out, in the present work, to define and study an analogous functor K2, also from associative rings to abelian groups. Just as functors K0 and K1 are important to geometric topologists, K2 is now considered to have similar topological applications. The exposition includes, besides K-theory, a considerable amount of related arithmetic.

Geometry and Topology: Aarhus

Geometry and Topology: Aarhus
Author :
Publisher : American Mathematical Soc.
Total Pages : 410
Release :
ISBN-10 : 9780821821589
ISBN-13 : 082182158X
Rating : 4/5 (89 Downloads)

Synopsis Geometry and Topology: Aarhus by : Karsten Grove

This volume includes both survey and research articles on major advances and future developments in geometry and topology. Papers include those presented as part of the 5th Aarhus Conference - a meeting of international participants held in connection with ICM Berlin in 1998 - and related papers on the subject. This collection of papers is aptly published in the Contemporary Mathematics series, as the works represent the state of research and address areas of future development in the area of manifold theory and geometry. The survey articles in particular would serve well as supplemental resources in related graduate courses.

Global Homotopy Theory

Global Homotopy Theory
Author :
Publisher : Cambridge University Press
Total Pages : 847
Release :
ISBN-10 : 9781108425810
ISBN-13 : 110842581X
Rating : 4/5 (10 Downloads)

Synopsis Global Homotopy Theory by : Stefan Schwede

A comprehensive, self-contained approach to global equivariant homotopy theory, with many detailed examples and sample calculations.

Topological and Bivariant K-Theory

Topological and Bivariant K-Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 268
Release :
ISBN-10 : 9783764383985
ISBN-13 : 3764383984
Rating : 4/5 (85 Downloads)

Synopsis Topological and Bivariant K-Theory by : Joachim Cuntz

Topological K-theory is one of the most important invariants for noncommutative algebras. Bott periodicity, homotopy invariance, and various long exact sequences distinguish it from algebraic K-theory. This book describes a bivariant K-theory for bornological algebras, which provides a vast generalization of topological K-theory. In addition, it details other approaches to bivariant K-theories for operator algebras. The book studies a number of applications, including K-theory of crossed products, the Baum-Connes assembly map, twisted K-theory with some of its applications, and some variants of the Atiyah-Singer Index Theorem.