An Introduction To K Theory For C Algebras
Download An Introduction To K Theory For C Algebras full books in PDF, epub, and Kindle. Read online free An Introduction To K Theory For C Algebras ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: M. Rørdam |
Publisher |
: Cambridge University Press |
Total Pages |
: 260 |
Release |
: 2000-07-20 |
ISBN-10 |
: 0521789443 |
ISBN-13 |
: 9780521789448 |
Rating |
: 4/5 (43 Downloads) |
Synopsis An Introduction to K-Theory for C*-Algebras by : M. Rørdam
This book provides a very elementary introduction to K-theory for C*-algebras, and is ideal for beginning graduate students.
Author |
: Niels Erik Wegge-Olsen |
Publisher |
: Oxford University Press on Demand |
Total Pages |
: 370 |
Release |
: 1993 |
ISBN-10 |
: 0198596944 |
ISBN-13 |
: 9780198596943 |
Rating |
: 4/5 (44 Downloads) |
Synopsis K-theory and C*-algebras by : Niels Erik Wegge-Olsen
K-theory is often considered a complicated mathematical theory for specialists only. This book is an accessible introduction to the basics and provides detailed explanations of the various concepts required for a deeper understanding of the subject. Some familiarity with basic C*algebra theory is assumed. The book then follows a careful construction and analysis of the operator K-theory groups and proof of the results of K-theory, including Bott periodicity. Of specific interest to algebraists and geometrists, the book aims to give full instruction. No details are left out in the presentation and many instructive and generously hinted exercises are provided. Apart from K-theory, this book offers complete and self contained expositions of important advanced C*-algebraic constructions like tensor products, multiplier algebras and Hilbert modules.
Author |
: Charles A. Weibel |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 634 |
Release |
: 2013-06-13 |
ISBN-10 |
: 9780821891322 |
ISBN-13 |
: 0821891324 |
Rating |
: 4/5 (22 Downloads) |
Synopsis The $K$-book by : Charles A. Weibel
Informally, $K$-theory is a tool for probing the structure of a mathematical object such as a ring or a topological space in terms of suitably parameterized vector spaces and producing important intrinsic invariants which are useful in the study of algebr
Author |
: Bruce Blackadar |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 347 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461395720 |
ISBN-13 |
: 1461395720 |
Rating |
: 4/5 (20 Downloads) |
Synopsis K-Theory for Operator Algebras by : Bruce Blackadar
K -Theory has revolutionized the study of operator algebras in the last few years. As the primary component of the subject of "noncommutative topol ogy," K -theory has opened vast new vistas within the structure theory of C* algebras, as well as leading to profound and unexpected applications of opera tor algebras to problems in geometry and topology. As a result, many topolo gists and operator algebraists have feverishly begun trying to learn each others' subjects, and it appears certain that these two branches of mathematics have become deeply and permanently intertwined. Despite the fact that the whole subject is only about a decade old, operator K -theory has now reached a state of relative stability. While there will undoubtedly be many more revolutionary developments and applications in the future, it appears the basic theory has more or less reached a "final form." But because of the newness of the theory, there has so far been no comprehensive treatment of the subject. It is the ambitious goal of these notes to fill this gap. We will develop the K -theory of Banach algebras, the theory of extensions of C*-algebras, and the operator K -theory of Kasparov from scratch to its most advanced aspects. We will not treat applications in detail; however, we will outline the most striking of the applications to date in a section at the end, as well as mentioning others at suitable points in the text.
Author |
: Karen R. Strung |
Publisher |
: Springer Nature |
Total Pages |
: 322 |
Release |
: 2020-12-15 |
ISBN-10 |
: 9783030474652 |
ISBN-13 |
: 3030474658 |
Rating |
: 4/5 (52 Downloads) |
Synopsis An Introduction to C*-Algebras and the Classification Program by : Karen R. Strung
This book is directed towards graduate students that wish to start from the basic theory of C*-algebras and advance to an overview of some of the most spectacular results concerning the structure of nuclear C*-algebras. The text is divided into three parts. First, elementary notions, classical theorems and constructions are developed. Then, essential examples in the theory, such as crossed products and the class of quasidiagonal C*-algebras, are examined, and finally, the Elliott invariant, the Cuntz semigroup, and the Jiang-Su algebra are defined. It is shown how these objects have played a fundamental role in understanding the fine structure of nuclear C*-algebras. To help understanding the theory, plenty of examples, treated in detail, are included. This volume will also be valuable to researchers in the area as a reference guide. It contains an extensive reference list to guide readers that wish to travel further.
Author |
: Kenneth R. Davidson |
Publisher |
: American Mathematical Society, Fields Institute |
Total Pages |
: 325 |
Release |
: 2023-10-04 |
ISBN-10 |
: 9781470475086 |
ISBN-13 |
: 1470475081 |
Rating |
: 4/5 (86 Downloads) |
Synopsis C*-Algebras by Example by : Kenneth R. Davidson
The subject of C*-algebras received a dramatic revitalization in the 1970s by the introduction of topological methods through the work of Brown, Douglas, and Fillmore on extensions of C*-algebras and Elliott's use of $K$-theory to provide a useful classification of AF algebras. These results were the beginning of a marvelous new set of tools for analyzing concrete C*-algebras. This book is an introductory graduate level text which presents the basics of the subject through a detailed analysis of several important classes of C*-algebras. The development of operator algebras in the last twenty years has been based on a careful study of these special classes. While there are many books on C*-algebras and operator algebras available, this is the first one to attempt to explain the real examples that researchers use to test their hypotheses. Topics include AF algebras, Bunce–Deddens and Cuntz algebras, the Toeplitz algebra, irrational rotation algebras, group C*-algebras, discrete crossed products, abelian C*-algebras (spectral theory and approximate unitary equivalence) and extensions. It also introduces many modern concepts and results in the subject such as real rank zero algebras, topological stable rank, quasidiagonality, and various new constructions. These notes were compiled during the author's participation in the special year on C*-algebras at The Fields Institute for Research in Mathematical Sciences during the 1994–1995 academic year. The field of C*-algebras touches upon many other areas of mathematics such as group representations, dynamical systems, physics, $K$-theory, and topology. The variety of examples offered in this text expose the student to many of these connections. Graduate students with a solid course in functional analysis should be able to read this book. This should prepare them to read much of the current literature. This book is reasonably self-contained, and the author has provided results from other areas when necessary.
Author |
: Gerald J. Murphy |
Publisher |
: Academic Press |
Total Pages |
: 297 |
Release |
: 2014-06-28 |
ISBN-10 |
: 9780080924960 |
ISBN-13 |
: 0080924964 |
Rating |
: 4/5 (60 Downloads) |
Synopsis C*-Algebras and Operator Theory by : Gerald J. Murphy
This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.
Author |
: Bruce A. Magurn |
Publisher |
: Cambridge University Press |
Total Pages |
: 704 |
Release |
: 2002-05-20 |
ISBN-10 |
: 9781107079441 |
ISBN-13 |
: 1107079446 |
Rating |
: 4/5 (41 Downloads) |
Synopsis An Algebraic Introduction to K-Theory by : Bruce A. Magurn
This is an introduction to algebraic K-theory with no prerequisite beyond a first semester of algebra (including Galois theory and modules over a principal ideal domain). The presentation is almost entirely self-contained, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry. No experience with analysis, geometry, number theory or topology is assumed. Within the context of linear algebra, K-theory organises and clarifies the relations among ideal class groups, group representations, quadratic forms, dimensions of a ring, determinants, quadratic reciprocity and Brauer groups of fields. By including introductions to standard algebra topics (tensor products, localisation, Jacobson radical, chain conditions, Dedekind domains, semi-simple rings, exterior algebras), the author makes algebraic K-theory accessible to first-year graduate students and other mathematically sophisticated readers. Even if your algebra is rusty, you can read this book; the necessary background is here, with proofs.
Author |
: Bruce Blackadar |
Publisher |
: Taylor & Francis |
Total Pages |
: 552 |
Release |
: 2006 |
ISBN-10 |
: 3540284869 |
ISBN-13 |
: 9783540284864 |
Rating |
: 4/5 (69 Downloads) |
Synopsis Operator Algebras by : Bruce Blackadar
This book offers a comprehensive introduction to the general theory of C*-algebras and von Neumann algebras. Beginning with the basics, the theory is developed through such topics as tensor products, nuclearity and exactness, crossed products, K-theory, and quasidiagonality. The presentation carefully and precisely explains the main features of each part of the theory of operator algebras; most important arguments are at least outlined and many are presented in full detail.
Author |
: Michael Atiyah |
Publisher |
: CRC Press |
Total Pages |
: 181 |
Release |
: 2018-03-05 |
ISBN-10 |
: 9780429973178 |
ISBN-13 |
: 0429973179 |
Rating |
: 4/5 (78 Downloads) |
Synopsis K-theory by : Michael Atiyah
These notes are based on the course of lectures I gave at Harvard in the fall of 1964. They constitute a self-contained account of vector bundles and K-theory assuming only the rudiments of point-set topology and linear algebra. One of the features of the treatment is that no use is made of ordinary homology or cohomology theory. In fact, rational cohomology is defined in terms of K-theory.The theory is taken as far as the solution of the Hopf invariant problem and a start is mode on the J-homomorphism. In addition to the lecture notes proper, two papers of mine published since 1964 have been reproduced at the end. The first, dealing with operations, is a natural supplement to the material in Chapter III. It provides an alternative approach to operations which is less slick but more fundamental than the Grothendieck method of Chapter III, and it relates operations and filtration. Actually, the lectures deal with compact spaces, not cell-complexes, and so the skeleton-filtration does not figure in the notes. The second paper provides a new approach to K-theory and so fills an obvious gap in the lecture notes.