Wind Energy Conversion Systems
Download Wind Energy Conversion Systems full books in PDF, epub, and Kindle. Read online free Wind Energy Conversion Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: S.M. Muyeen |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 532 |
Release |
: 2012-01-04 |
ISBN-10 |
: 9781447122005 |
ISBN-13 |
: 1447122003 |
Rating |
: 4/5 (05 Downloads) |
Synopsis Wind Energy Conversion Systems by : S.M. Muyeen
This exploration of the technical progress of wind energy conversion systems also examines potential future trends and includes recently developed systems such as those for multi-converter operation of variable-speed wind generators and lightning protection.
Author |
: Muhammad Kamran |
Publisher |
: Academic Press |
Total Pages |
: 302 |
Release |
: 2021-05-15 |
ISBN-10 |
: 9780128235980 |
ISBN-13 |
: 0128235985 |
Rating |
: 4/5 (80 Downloads) |
Synopsis Renewable energy conversion systems by : Muhammad Kamran
Fundamentals of Renewable Energy Systems goes beyond theoretical aspects of advances in renewable energy and addresses future trends. By focusing on the design of developing technologies, relevant operation and detailed background and an understanding of the application of power electronics and thermodynamics processes in renewable energy, this book provides an analysis of advancing energy systems. The book will be of interest to engineering graduates, researchers, professors and industry professionals involved in the renewable energy sector and is ideal for advanced engineering courses dealing with renewable energy, sources, thermal and electrical energy production and sustainability. With increasing focus on developing low carbon energy production, audiences need to have the engineering knowledge and practical skills to develop and implement creative solutions to engineering problems encountered with renewable energy technologies. By looking at renewable energy capture and conversion, system design and analysis, project development and implementation, each modular chapter examines recent advances in specific renewable energy systems with detailed methods, calculations and worked examples. - Includes recent techniques used to design and model different renewable energy sources (RES) - Demonstrates how to use power electronics in renewable systems - Discusses how to identify, design, integrate and operate the most suitable technologies through key problems
Author |
: Venkata Yaramasu |
Publisher |
: John Wiley & Sons |
Total Pages |
: 516 |
Release |
: 2016-12-19 |
ISBN-10 |
: 9781118988589 |
ISBN-13 |
: 1118988582 |
Rating |
: 4/5 (89 Downloads) |
Synopsis Model Predictive Control of Wind Energy Conversion Systems by : Venkata Yaramasu
Model Predictive Control of Wind Energy Conversion Systems addresses the predicative control strategy that has emerged as a promising digital control tool within the field of power electronics, variable-speed motor drives, and energy conversion systems. The authors provide a comprehensive analysis on the model predictive control of power converters employed in a wide variety of variable-speed wind energy conversion systems (WECS). The contents of this book includes an overview of wind energy system configurations, power converters for variable-speed WECS, digital control techniques, MPC, modeling of power converters and wind generators for MPC design. Other topics include the mapping of continuous-time models to discrete-time models by various exact, approximate, and quasi-exact discretization methods, modeling and control of wind turbine grid-side two-level and multilevel voltage source converters. The authors also focus on the MPC of several power converter configurations for full variable-speed permanent magnet synchronous generator based WECS, squirrel-cage induction generator based WECS, and semi-variable-speed doubly fed induction generator based WECS. Furthermore, this book: Analyzes a wide variety of practical WECS, illustrating important concepts with case studies, simulations, and experimental results Provides a step-by-step design procedure for the development of predictive control schemes for various WECS configurations Describes continuous- and discrete-time modeling of wind generators and power converters, weighting factor selection, discretization methods, and extrapolation techniques Presents useful material for other power electronic applications such as variable-speed motor drives, power quality conditioners, electric vehicles, photovoltaic energy systems, distributed generation, and high-voltage direct current transmission. Explores S-Function Builder programming in MATLAB environment to implement various MPC strategies through the companion website Reflecting the latest technologies in the field, Model Predictive Control of Wind Energy Conversion Systems is a valuable reference for academic researchers, practicing engineers, and other professionals. It can also be used as a textbook for graduate-level and advanced undergraduate courses.
Author |
: Bin Wu |
Publisher |
: John Wiley & Sons |
Total Pages |
: 480 |
Release |
: 2011-08-09 |
ISBN-10 |
: 9780470593653 |
ISBN-13 |
: 0470593652 |
Rating |
: 4/5 (53 Downloads) |
Synopsis Power Conversion and Control of Wind Energy Systems by : Bin Wu
The book presents the latest power conversion and control technology in modern wind energy systems. It has nine chapters, covering technology overview and market survey, electric generators and modeling, power converters and modulation techniques, wind turbine characteristics and configurations, and control schemes for fixed- and variable-speed wind energy systems. The book also provides in-depth steady-state and dynamic analysis of squirrel cage induction generator, doubly fed induction generator, and synchronous generator based wind energy systems. To illustrate the key concepts and help the reader tackle real-world issues, the book contains more than 30 case studies and 100 solved problems in addition to simulations and experiments. The book serves as a comprehensive reference for academic researchers and practicing engineers. It can also be used as a textbook for graduate students and final year undergraduate students.
Author |
: Fayssal Amrane |
Publisher |
: Bentham Science Publishers |
Total Pages |
: 148 |
Release |
: 2019-07-26 |
ISBN-10 |
: 9789811412660 |
ISBN-13 |
: 9811412669 |
Rating |
: 4/5 (60 Downloads) |
Synopsis Improved Indirect Power Control (IDPC) of Wind Energy Conversion Systems (WECS) by : Fayssal Amrane
Wind power capacity in the world has been increased by more than 30% over the last decade in countries which have prominent installations. Wind energy conversion systems (WECSs) based on the doubly-fed induction generator (DFIG) have dominated the wind power generation sector due to the outstanding advantages they provide, including small converter ratings (around 30% of the generator rating) and lower converter costs. Due to the non-linearity of wind power systems, the DFIG power control setup presents a big challenge especially under conditions of high variance in wind-speed and parameter sensing. To overcome these major problems, an improved IDPC (Indirect Power Control) system based on PID (Proportional-Integral-Derivative) controller, has been proposed instead of the conventional power inverters. This handbook covers information about IDPC based WECS. The book starts with a general introduction to wind power system basics. Subsequent chapters provide additional knowledge about robustness tests and adaptive / intelligent control systems employed in wind energy systems. The new concept of direct and quadrature current control (Ird & Irq) under MPPT (Maximum Power Point Tracking) strategy is also explained along with novel fuzzy logic type control systems. The authors have included detailed diagrams and an appendix of WECS parameters, making this handbook a useful primer for engineering students working towards completing licenses, Masters degrees and Post-graduation programs in advanced wind power energy systems.
Author |
: Siegfried Heier |
Publisher |
: John Wiley & Sons |
Total Pages |
: 533 |
Release |
: 2014-04-21 |
ISBN-10 |
: 9781118703298 |
ISBN-13 |
: 1118703294 |
Rating |
: 4/5 (98 Downloads) |
Synopsis Grid Integration of Wind Energy by : Siegfried Heier
This popular reference describes the integration of wind-generated power into electrical power systems and, with the use of advanced control systems, illustrates how wind farms can be made to operate like conventional power plants. Fully revised, the third edition provides up-to-date coverage on new generator developments for wind turbines, recent technical developments in electrical power conversion systems, control design and essential operating conditions. With expanded coverage of offshore technologies, this edition looks at the characteristics and static and dynamic behaviour of offshore wind farms and their connection to the mainland grid. Brand new material includes: comprehensive treatment of onshore and offshore grid integration updated legislative guidelines for the design, construction and installation of wind power plants the fundamental characteristics and theoretical tools of electrical and mechanical components and their interactions new and future types of generators, converters, power electronics and controller designs improved use of grid capacities and grid support for fixed- and variable-speed controlled wind power plants options for grid control and power reserve provision in wind power plants and wind farms This resource is an excellent guide for researchers and practitioners involved in the planning, installation and grid integration of wind turbines and power plants. It is also highly beneficial to university students studying wind power technology, renewable energy and power systems, and to practitioners in wind engineering, turbine design and manufacture and electrical power engineering.
Author |
: Siegfried Heier |
Publisher |
: Wiley |
Total Pages |
: 0 |
Release |
: 2006-06-05 |
ISBN-10 |
: 0470868996 |
ISBN-13 |
: 9780470868997 |
Rating |
: 4/5 (96 Downloads) |
Synopsis Grid Integration of Wind Energy Conversion Systems by : Siegfried Heier
Wind energy is a reliable, natural and renewable electrical power supply. The high installed capacity of today’s wind turbines and decreasing plant costs have shown that wind power can be competitive with conventional, more heavily polluting, fuels in the long term. Focusing on the electrical engineering aspects of wind energy, this completely revised edition provides a detailed treatment of electrical and mechanical components and their interdependency, power control and supervision in wind power plants, and the grid integration facility. The book incorporates all the recent technical developments in electrical power conversion systems and essential operating conditions. Provides guidelines for the design, construction and installation of wind power plants Presents the history of wind technology, wind resources and economics of wind energy generation Introduces operating results and cost considerations Describes the fundamental characteristics and theoretical tools of electrical and mechanical components Discusses conventional and new types of generators, converters and power electronics Offers a comprehensive treatment of grid integration including the effect of power fluctuations on harmonics Focuses on improved use of grid capacities and grid support for fixed-and variable-speed controlled wind power plants Outlines power conditioning and control systems to ensure the safe operation of plants Fully revised and updated, this new edition will continue to be the definitive resource for researchers and practitioners involved in the planning, installation and grid integration of wind turbines and power plants. The thorough approach will also prove highly beneficial to university students and practitioners in wind engineering, turbine design and manufacture and electrical power engineering.
Author |
: Alireza Khaligh |
Publisher |
: CRC Press |
Total Pages |
: 529 |
Release |
: 2017-12-19 |
ISBN-10 |
: 9781351834025 |
ISBN-13 |
: 1351834029 |
Rating |
: 4/5 (25 Downloads) |
Synopsis Energy Harvesting by : Alireza Khaligh
Also called energy scavenging, energy harvesting captures, stores, and uses "clean" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, "green" resources and converting them into electrical energy. Recognizing this need, Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems describes various energy harvesting technologies, different topologies, and many types of power electronic interfaces for stand-alone utilization or grid connection of energy harvesting applications. Along with providing all the necessary concepts and theoretical background, the authors develop simulation models throughout the text to build a practical understanding of system analysis and modeling. With a focus on solar energy, the first chapter discusses the I−V characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, sun tracking systems, maximum power point tracking systems, shading effects, and power electronic interfaces for grid-connected and stand-alone PV systems. It also presents sizing criteria for applications and modern solar energy applications, including residential, vehicular, naval, and space applications. The next chapter reviews different types of wind turbines and electrical machines as well as various power electronic interfaces. After explaining the energy generation technologies, optimal operation principles, and possible utilization techniques of ocean tidal energy harvesting, the book explores near- and offshore approaches for harvesting the kinetic and potential energy of ocean waves. It also describes the required absorber, turbine, and generator types, along with the power electronic interfaces for grid connection and commercialized ocean wave energy conversion applications. The final chapter deals with closed, open, and hybrid-cycle ocean thermal energy conversion systems.
Author |
: S. Sumathi |
Publisher |
: Springer |
Total Pages |
: 0 |
Release |
: 2016-10-06 |
ISBN-10 |
: 3319366939 |
ISBN-13 |
: 9783319366937 |
Rating |
: 4/5 (39 Downloads) |
Synopsis Solar PV and Wind Energy Conversion Systems by : S. Sumathi
This textbook starts with a review of the principles of operation, modeling and control of common solar energy and wind-power generation systems before moving on to discuss grid compatibility, power quality issues and hybrid models of Solar PV and Wind Energy Conversion Systems (WECS). MATLAB/SIMULINK models of fuel cell technology and associated converters are discussed in detail. The impact of soft computing techniques such as neural networks, fuzzy logic and genetic algorithms in the context of solar and wind energy is explained with practical implementation using MATLAB/SIMULINK models. This book is intended for final year undergraduate, post-graduate and research students interested in understanding the modeling and control of Solar PV and Wind Energy Conversion Systems based on MATLAB/SIMULINK. - Each chapter includes “Learning Objectives” at the start, a “Summary” at the end and helpful Review Questions - Includes MATLAB/SIMULINK models of different control strategies for power conditioning units in the context of Solar PV - Presents soft computing techniques for Solar PV and WECS, as well as MATLAB/SIMULINK models, e.g. for wind turbine topologies and grid integration - Covers hybrid solar PV and Wind Energy Conversion Systems with converters and MATLAB/SIMULINK models - Reviews harmonic reduction in Solar PV and Wind Energy Conversion Systems in connection with power quality issues - Covers fuel cells and converters with implementation using MATLAB/SIMULINK
Author |
: Karam Maalawi |
Publisher |
: BoD – Books on Demand |
Total Pages |
: 252 |
Release |
: 2020-04-15 |
ISBN-10 |
: 9781789844078 |
ISBN-13 |
: 178984407X |
Rating |
: 4/5 (78 Downloads) |
Synopsis Design Optimization of Wind Energy Conversion Systems with Applications by : Karam Maalawi
Modern and larger horizontal-axis wind turbines with power capacity reaching 15 MW and rotors of more than 235-meter diameter are under continuous development for the merit of minimizing the unit cost of energy production (total annual cost/annual energy produced). Such valuable advances in this competitive source of clean energy have made numerous research contributions in developing wind industry technologies worldwide. This book provides important information on the optimum design of wind energy conversion systems (WECS) with a comprehensive and self-contained handling of design fundamentals of wind turbines. Section I deals with optimal production of energy, multi-disciplinary optimization of wind turbines, aerodynamic and structural dynamic optimization and aeroelasticity of the rotating blades. Section II considers operational monitoring, reliability and optimal control of wind turbine components.