Model Predictive Control of Wind Energy Conversion Systems

Model Predictive Control of Wind Energy Conversion Systems
Author :
Publisher : John Wiley & Sons
Total Pages : 516
Release :
ISBN-10 : 9781118988589
ISBN-13 : 1118988582
Rating : 4/5 (89 Downloads)

Synopsis Model Predictive Control of Wind Energy Conversion Systems by : Venkata Yaramasu

Model Predictive Control of Wind Energy Conversion Systems addresses the predicative control strategy that has emerged as a promising digital control tool within the field of power electronics, variable-speed motor drives, and energy conversion systems. The authors provide a comprehensive analysis on the model predictive control of power converters employed in a wide variety of variable-speed wind energy conversion systems (WECS). The contents of this book includes an overview of wind energy system configurations, power converters for variable-speed WECS, digital control techniques, MPC, modeling of power converters and wind generators for MPC design. Other topics include the mapping of continuous-time models to discrete-time models by various exact, approximate, and quasi-exact discretization methods, modeling and control of wind turbine grid-side two-level and multilevel voltage source converters. The authors also focus on the MPC of several power converter configurations for full variable-speed permanent magnet synchronous generator based WECS, squirrel-cage induction generator based WECS, and semi-variable-speed doubly fed induction generator based WECS. Furthermore, this book: Analyzes a wide variety of practical WECS, illustrating important concepts with case studies, simulations, and experimental results Provides a step-by-step design procedure for the development of predictive control schemes for various WECS configurations Describes continuous- and discrete-time modeling of wind generators and power converters, weighting factor selection, discretization methods, and extrapolation techniques Presents useful material for other power electronic applications such as variable-speed motor drives, power quality conditioners, electric vehicles, photovoltaic energy systems, distributed generation, and high-voltage direct current transmission. Explores S-Function Builder programming in MATLAB environment to implement various MPC strategies through the companion website Reflecting the latest technologies in the field, Model Predictive Control of Wind Energy Conversion Systems is a valuable reference for academic researchers, practicing engineers, and other professionals. It can also be used as a textbook for graduate-level and advanced undergraduate courses.

Model Predictive Control of Wind Energy Conversion Systems

Model Predictive Control of Wind Energy Conversion Systems
Author :
Publisher : John Wiley & Sons
Total Pages : 511
Release :
ISBN-10 : 9781119082996
ISBN-13 : 1119082994
Rating : 4/5 (96 Downloads)

Synopsis Model Predictive Control of Wind Energy Conversion Systems by : Venkata Yaramasu

Model Predictive Control of Wind Energy Conversion Systems addresses the predicative control strategy that has emerged as a promising digital control tool within the field of power electronics, variable-speed motor drives, and energy conversion systems. The authors provide a comprehensive analysis on the model predictive control of power converters employed in a wide variety of variable-speed wind energy conversion systems (WECS). The contents of this book includes an overview of wind energy system configurations, power converters for variable-speed WECS, digital control techniques, MPC, modeling of power converters and wind generators for MPC design. Other topics include the mapping of continuous-time models to discrete-time models by various exact, approximate, and quasi-exact discretization methods, modeling and control of wind turbine grid-side two-level and multilevel voltage source converters. The authors also focus on the MPC of several power converter configurations for full variable-speed permanent magnet synchronous generator based WECS, squirrel-cage induction generator based WECS, and semi-variable-speed doubly fed induction generator based WECS. Furthermore, this book: Analyzes a wide variety of practical WECS, illustrating important concepts with case studies, simulations, and experimental results Provides a step-by-step design procedure for the development of predictive control schemes for various WECS configurations Describes continuous- and discrete-time modeling of wind generators and power converters, weighting factor selection, discretization methods, and extrapolation techniques Presents useful material for other power electronic applications such as variable-speed motor drives, power quality conditioners, electric vehicles, photovoltaic energy systems, distributed generation, and high-voltage direct current transmission. Explores S-Function Builder programming in MATLAB environment to implement various MPC strategies through the companion website Reflecting the latest technologies in the field, Model Predictive Control of Wind Energy Conversion Systems is a valuable reference for academic researchers, practicing engineers, and other professionals. It can also be used as a textbook for graduate-level and advanced undergraduate courses.

Power Conversion and Control of Wind Energy Systems

Power Conversion and Control of Wind Energy Systems
Author :
Publisher : John Wiley & Sons
Total Pages : 480
Release :
ISBN-10 : 9780470593653
ISBN-13 : 0470593652
Rating : 4/5 (53 Downloads)

Synopsis Power Conversion and Control of Wind Energy Systems by : Bin Wu

The book presents the latest power conversion and control technology in modern wind energy systems. It has nine chapters, covering technology overview and market survey, electric generators and modeling, power converters and modulation techniques, wind turbine characteristics and configurations, and control schemes for fixed- and variable-speed wind energy systems. The book also provides in-depth steady-state and dynamic analysis of squirrel cage induction generator, doubly fed induction generator, and synchronous generator based wind energy systems. To illustrate the key concepts and help the reader tackle real-world issues, the book contains more than 30 case studies and 100 solved problems in addition to simulations and experiments. The book serves as a comprehensive reference for academic researchers and practicing engineers. It can also be used as a textbook for graduate students and final year undergraduate students.

Model Predictive Control for Microgrids

Model Predictive Control for Microgrids
Author :
Publisher : Energy Engineering
Total Pages : 300
Release :
ISBN-10 : 1839533978
ISBN-13 : 9781839533976
Rating : 4/5 (78 Downloads)

Synopsis Model Predictive Control for Microgrids by : Jiefeng Hu

Model predictive control (MPC) is a method for controlling a process while satisfying a set of constraints. The use of MPC for controlling power systems has been gaining traction in recent years. This work presents the use of MPC for distributed renewable power generation in microgrids.

Model Predictive Control of Microgrids

Model Predictive Control of Microgrids
Author :
Publisher : Springer Nature
Total Pages : 280
Release :
ISBN-10 : 9783030245702
ISBN-13 : 3030245705
Rating : 4/5 (02 Downloads)

Synopsis Model Predictive Control of Microgrids by : Carlos Bordons

The book shows how the operation of renewable-energy microgrids can be facilitated by the use of model predictive control (MPC). It gives readers a wide overview of control methods for microgrid operation at all levels, ranging from quality of service, to integration in the electricity market. MPC-based solutions are provided for the main control issues related to energy management and optimal operation of microgrids. The authors present MPC techniques for case studies that include different renewable sources – mainly photovoltaic and wind – as well as hybrid storage using batteries, hydrogen and supercapacitors. Experimental results for a pilot-scale microgrid are also presented, as well as simulations of scheduling in the electricity market and integration of electric and hybrid vehicles into the microgrid. in order to replicate the examples provided in the book and to develop and validate control algorithms on existing or projected microgrids. Model Predictive Control of Microgrids will interest researchers and practitioners, enabling them to keep abreast of a rapidly developing field. The text will also help to guide graduate students through processes from the conception and initial design of a microgrid through its implementation to the optimization of microgrid management. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.

Airborne Wind Energy

Airborne Wind Energy
Author :
Publisher : Springer
Total Pages : 752
Release :
ISBN-10 : 9789811019470
ISBN-13 : 9811019479
Rating : 4/5 (70 Downloads)

Synopsis Airborne Wind Energy by : Roland Schmehl

This book provides in-depth coverage of the latest research and development activities concerning innovative wind energy technologies intended to replace fossil fuels on an economical basis. A characteristic feature of the various conversion concepts discussed is the use of tethered flying devices to substantially reduce the material consumption per installed unit and to access wind energy at higher altitudes, where the wind is more consistent. The introductory chapter describes the emergence and economic dimension of airborne wind energy. Focusing on “Fundamentals, Modeling & Simulation”, Part I includes six contributions that describe quasi-steady as well as dynamic models and simulations of airborne wind energy systems or individual components. Shifting the spotlight to “Control, Optimization & Flight State Measurement”, Part II combines one chapter on measurement techniques with five chapters on control of kite and ground stations, and two chapters on optimization. Part III on “Concept Design & Analysis” includes three chapters that present and analyze novel harvesting concepts as well as two chapters on system component design. Part IV, which centers on “Implemented Concepts”, presents five chapters on established system concepts and one chapter about a subsystem for automatic launching and landing of kites. In closing, Part V focuses with four chapters on “Technology Deployment” related to market and financing strategies, as well as on regulation and the environment. The book builds on the success of the first volume “Airborne Wind Energy” (Springer, 2013), and offers a self-contained reference guide for researchers, scientists, professionals and students. The respective chapters were contributed by a broad variety of authors: academics, practicing engineers and inventors, all of whom are experts in their respective fields.

Wind Energy Generation: Modelling and Control

Wind Energy Generation: Modelling and Control
Author :
Publisher : John Wiley & Sons
Total Pages : 222
Release :
ISBN-10 : 9781119964209
ISBN-13 : 1119964202
Rating : 4/5 (09 Downloads)

Synopsis Wind Energy Generation: Modelling and Control by : Olimpo Anaya-Lara

WIND ENERGY GENERATION WIND ENERGY GENERATION MODELLING AND CONTROL With increasing concern over climate change and the security of energy supplies, wind power is emerging as an important source of electrical energy throughout the world. Modern wind turbines use advanced power electronics to provide efficient generator control and to ensure compatible operation with the power system. Wind Energy Generation describes the fundamental principles and modelling of the electrical generator and power electronic systems used in large wind turbines. It also discusses how they interact with the power system and the influence of wind turbines on power system operation and stability. Key features: Includes a comprehensive account of power electronic equipment used in wind turbines and for their grid connection. Describes enabling technologies which facilitate the connection of large-scale onshore and offshore wind farms. Provides detailed modelling and control of wind turbine systems. Shows a number of simulations and case studies which explain the dynamic interaction between wind power and conventional generation.

Blade-Pitch Control for Wind Turbine Load Reductions

Blade-Pitch Control for Wind Turbine Load Reductions
Author :
Publisher : Springer
Total Pages : 174
Release :
ISBN-10 : 3319755315
ISBN-13 : 9783319755311
Rating : 4/5 (15 Downloads)

Synopsis Blade-Pitch Control for Wind Turbine Load Reductions by : Wai Hou (Alan) Lio

This thesis investigates the use of blade-pitch control and real-time wind measurements to reduce the structural loads on the rotors and blades of wind turbines. The first part of the thesis studies the main similarities between the various classes of current blade-pitch control strategies, which have to date remained overlooked by mainstream literature. It also investigates the feasibility of an estimator design that extracts the turbine tower motion signal from the blade load measurements. In turn, the second part of the thesis proposes a novel model predictive control layer in the control architecture that enables an existing controller to incorporate the upcoming wind information and constraint-handling features. This thesis provides essential clarifications of and systematic design guidelines for these topics, which can benefit the design of wind turbines and, it is hoped, inspire the development of more innovative mechanical load-reduction solutions in the field of wind energy.

Economic Model Predictive Control

Economic Model Predictive Control
Author :
Publisher : Springer
Total Pages : 311
Release :
ISBN-10 : 9783319411088
ISBN-13 : 331941108X
Rating : 4/5 (88 Downloads)

Synopsis Economic Model Predictive Control by : Matthew Ellis

This book presents general methods for the design of economic model predictive control (EMPC) systems for broad classes of nonlinear systems that address key theoretical and practical considerations including recursive feasibility, closed-loop stability, closed-loop performance, and computational efficiency. Specifically, the book proposes: Lyapunov-based EMPC methods for nonlinear systems; two-tier EMPC architectures that are highly computationally efficient; and EMPC schemes handling explicitly uncertainty, time-varying cost functions, time-delays and multiple-time-scale dynamics. The proposed methods employ a variety of tools ranging from nonlinear systems analysis, through Lyapunov-based control techniques to nonlinear dynamic optimization. The applicability and performance of the proposed methods are demonstrated through a number of chemical process examples. The book presents state-of-the-art methods for the design of economic model predictive control systems for chemical processes.In addition to being mathematically rigorous, these methods accommodate key practical issues, for example, direct optimization of process economics, time-varying economic cost functions and computational efficiency. Numerous comments and remarks providing fundamental understanding of the merging of process economics and feedback control into a single framework are included. A control engineer can easily tailor the many detailed examples of industrial relevance given within the text to a specific application. The authors present a rich collection of new research topics and references to significant recent work making Economic Model Predictive Control an important source of information and inspiration for academics and graduate students researching the area and for process engineers interested in applying its ideas.

Model Predictive Control System Design and Implementation Using MATLAB®

Model Predictive Control System Design and Implementation Using MATLAB®
Author :
Publisher : Springer Science & Business Media
Total Pages : 398
Release :
ISBN-10 : 9781848823310
ISBN-13 : 1848823312
Rating : 4/5 (10 Downloads)

Synopsis Model Predictive Control System Design and Implementation Using MATLAB® by : Liuping Wang

Model Predictive Control System Design and Implementation Using MATLAB® proposes methods for design and implementation of MPC systems using basis functions that confer the following advantages: - continuous- and discrete-time MPC problems solved in similar design frameworks; - a parsimonious parametric representation of the control trajectory gives rise to computationally efficient algorithms and better on-line performance; and - a more general discrete-time representation of MPC design that becomes identical to the traditional approach for an appropriate choice of parameters. After the theoretical presentation, coverage is given to three industrial applications. The subject of quadratic programming, often associated with the core optimization algorithms of MPC is also introduced and explained. The technical contents of this book is mainly based on advances in MPC using state-space models and basis functions. This volume includes numerous analytical examples and problems and MATLAB® programs and exercises.