Univalent Functions and Teichmüller Spaces

Univalent Functions and Teichmüller Spaces
Author :
Publisher : Springer Science & Business Media
Total Pages : 271
Release :
ISBN-10 : 9781461386520
ISBN-13 : 1461386527
Rating : 4/5 (20 Downloads)

Synopsis Univalent Functions and Teichmüller Spaces by : O. Lehto

This monograph grew out of the notes relating to the lecture courses that I gave at the University of Helsinki from 1977 to 1979, at the Eidgenossische Technische Hochschule Zurich in 1980, and at the University of Minnesota in 1982. The book presumably would never have been written without Fred Gehring's continuous encouragement. Thanks to the arrangements made by Edgar Reich and David Storvick, I was able to spend the fall term of 1982 in Minneapolis and do a good part of the writing there. Back in Finland, other commitments delayed the completion of the text. At the final stages of preparing the manuscript, I was assisted first by Mika Seppala and then by Jouni Luukkainen, who both had a grant from the Academy of Finland. I am greatly indebted to them for the improvements they made in the text. I also received valuable advice and criticism from Kari Astala, Richard Fehlmann, Barbara Flinn, Fred Gehring, Pentti Jarvi, Irwin Kra, Matti Lehtinen, I1ppo Louhivaara, Bruce Palka, Kurt Strebel, Kalevi Suominen, Pekka Tukia and Kalle Virtanen. To all of them I would like to express my gratitude. Raili Pauninsalo deserves special thanks for her patience and great care in typing the manuscript. Finally, I thank the editors for accepting my text in Springer-Verlag's well known series. Helsinki, Finland June 1986 Olli Lehto Contents Preface. ... v Introduction ...

Topology And Teichmuller Spaces - Proceedings Of The 37th Taniguchi Symposium

Topology And Teichmuller Spaces - Proceedings Of The 37th Taniguchi Symposium
Author :
Publisher : World Scientific
Total Pages : 305
Release :
ISBN-10 : 9789814602549
ISBN-13 : 981460254X
Rating : 4/5 (49 Downloads)

Synopsis Topology And Teichmuller Spaces - Proceedings Of The 37th Taniguchi Symposium by : Sadayoshi Kojima

This proceedings is a collection of articles on Topology and Teichmüller Spaces. Special emphasis is being put on the universal Teichmüller space, the topology of moduli of algebraic curves, the space of representations of discrete groups, Kleinian groups and Dehn filling deformations, the geometry of Riemann surfaces, and some related topics.

Weil-Petersson Metric on the Universal Teichmuller Space

Weil-Petersson Metric on the Universal Teichmuller Space
Author :
Publisher : American Mathematical Soc.
Total Pages : 136
Release :
ISBN-10 : 9780821839362
ISBN-13 : 0821839365
Rating : 4/5 (62 Downloads)

Synopsis Weil-Petersson Metric on the Universal Teichmuller Space by : Leon Armenovich Takhtadzhi︠a︡n

In this memoir, we prove that the universal Teichmuller space $T(1)$ carries a new structure of a complex Hilbert manifold and show that the connected component of the identity of $T(1)$ -- the Hilbert submanifold $T {0 (1)$ -- is a topological group. We define a Weil-Petersson metric on $T(1)$ by Hilbert space inner products on tangent spaces, compute its Riemann curvature tensor, and show that $T(1)$ is a Kahler-Einstein manifold with negative Ricci and sectional curvatures. We introduce and compute Mumford-Miller-Morita characteristic forms for the vertical tangent bundle of the universal Teichmuller curve fibration over the universal Teichmuller space. As an application, we derive Wolpert curvature formulas for the finite-dimensional Teichmuller spaces from the formulas for the universal Teichmuller space. We study in detail the Hilbert manifold structure on $T {0 (1)$ and characterize points on $T {0 (1)$ in terms of Bers and pre-Bers embeddings by proving that the Grunsky operators $B {1 $ and The results of this memoir were presented in our e-prints: Weil-Petersson metric on the universal Teichmuller space I. Curvature properties and Chern forms, arXiv:math.CV/0312172 (2003), and Weil-Petersson metric on the universal Teichmuller space II. Kahler potential and period mapping, arXiv:math.CV/0406408 (2004).

Handbook of Complex Analysis

Handbook of Complex Analysis
Author :
Publisher : Elsevier
Total Pages : 876
Release :
ISBN-10 : 9780080495170
ISBN-13 : 0080495176
Rating : 4/5 (70 Downloads)

Synopsis Handbook of Complex Analysis by : Reiner Kuhnau

Geometric Function Theory is that part of Complex Analysis which covers the theory of conformal and quasiconformal mappings. Beginning with the classical Riemann mapping theorem, there is a lot of existence theorems for canonical conformal mappings. On the other side there is an extensive theory of qualitative properties of conformal and quasiconformal mappings, concerning mainly a prior estimates, so called distortion theorems (including the Bieberbach conjecture with the proof of the Branges). Here a starting point was the classical Scharz lemma, and then Koebe's distortion theorem. There are several connections to mathematical physics, because of the relations to potential theory (in the plane). The Handbook of Geometric Function Theory contains also an article about constructive methods and further a Bibliography including applications eg: to electroxtatic problems, heat conduction, potential flows (in the plane). · A collection of independent survey articles in the field of GeometricFunction Theory · Existence theorems and qualitative properties of conformal and quasiconformal mappings · A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane).

Geometry of Riemann Surfaces and Teichmüller Spaces

Geometry of Riemann Surfaces and Teichmüller Spaces
Author :
Publisher : Elsevier
Total Pages : 269
Release :
ISBN-10 : 9780080872803
ISBN-13 : 0080872808
Rating : 4/5 (03 Downloads)

Synopsis Geometry of Riemann Surfaces and Teichmüller Spaces by : M. Seppälä

The moduli problem is to describe the structure of the spaceof isomorphism classes of Riemann surfaces of a giventopological type. This space is known as the modulispace and has been at the center of pure mathematics formore than a hundred years. In spite of its age, this fieldstill attracts a lot of attention, the smooth compact Riemannsurfaces being simply complex projective algebraic curves.Therefore the moduli space of compact Riemann surfaces is alsothe moduli space of complex algebraic curves. This space lieson the intersection of many fields of mathematics and may bestudied from many different points of view.The aim of thismonograph is to present information about the structure of themoduli space using as concrete and elementary methods aspossible. This simple approach leads to a rich theory andopens a new way of treating the moduli problem, putting newlife into classical methods that were used in the study ofmoduli problems in the 1920s.

An Introduction to Teichmüller Spaces

An Introduction to Teichmüller Spaces
Author :
Publisher : Springer Science & Business Media
Total Pages : 291
Release :
ISBN-10 : 9784431681748
ISBN-13 : 4431681744
Rating : 4/5 (48 Downloads)

Synopsis An Introduction to Teichmüller Spaces by : Yoichi Imayoshi

This book offers an easy and compact access to the theory of TeichmA1/4ller spaces, starting from the most elementary aspects to the most recent developments, e.g. the role this theory plays with regard to string theory. TeichmA1/4ller spaces give parametrization of all the complex structures on a given Riemann surface. This subject is related to many different areas of mathematics including complex analysis, algebraic geometry, differential geometry, topology in two and three dimensions, Kleinian and Fuchsian groups, automorphic forms, complex dynamics, and ergodic theory. Recently, TeichmA1/4ller spaces have begun to play an important role in string theory. Imayoshi and Taniguchi have attempted to make the book as self-contained as possible. They present numerous examples and heuristic arguments in order to help the reader grasp the ideas of TeichmA1/4ller theory. The book will be an excellent source of information for graduate students and reserachers in complex analysis and algebraic geometry as well as for theoretical physicists working in quantum theory.

Harmonic Analysis and Partial Differential Equations

Harmonic Analysis and Partial Differential Equations
Author :
Publisher : Springer Nature
Total Pages : 319
Release :
ISBN-10 : 9783031254246
ISBN-13 : 3031254244
Rating : 4/5 (46 Downloads)

Synopsis Harmonic Analysis and Partial Differential Equations by : Anatoly Golberg

Over the course of his distinguished career, Vladimir Maz'ya has made a number of groundbreaking contributions to numerous areas of mathematics, including partial differential equations, function theory, and harmonic analysis. The chapters in this volume - compiled on the occasion of his 80th birthday - are written by distinguished mathematicians and pay tribute to his many significant and lasting achievements.

Handbook of Complex Analysis

Handbook of Complex Analysis
Author :
Publisher : Elsevier
Total Pages : 549
Release :
ISBN-10 : 9780080532813
ISBN-13 : 0080532810
Rating : 4/5 (13 Downloads)

Synopsis Handbook of Complex Analysis by : Reiner Kuhnau

Geometric Function Theory is a central part of Complex Analysis (one complex variable). The Handbook of Complex Analysis - Geometric Function Theory deals with this field and its many ramifications and relations to other areas of mathematics and physics. The theory of conformal and quasiconformal mappings plays a central role in this Handbook, for example a priori-estimates for these mappings which arise from solving extremal problems, and constructive methods are considered. As a new field the theory of circle packings which goes back to P. Koebe is included. The Handbook should be useful for experts as well as for mathematicians working in other areas, as well as for physicists and engineers.· A collection of independent survey articles in the field of GeometricFunction Theory · Existence theorems and qualitative properties of conformal and quasiconformal mappings · A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane)