Harmonic Analysis And Partial Differential Equations
Download Harmonic Analysis And Partial Differential Equations full books in PDF, epub, and Kindle. Read online free Harmonic Analysis And Partial Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Dorina Mitrea |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 475 |
Release |
: 2013-09-20 |
ISBN-10 |
: 9781461482086 |
ISBN-13 |
: 1461482089 |
Rating |
: 4/5 (86 Downloads) |
Synopsis Distributions, Partial Differential Equations, and Harmonic Analysis by : Dorina Mitrea
The theory of distributions constitutes an essential tool in the study of partial differential equations. This textbook would offer, in a concise, largely self-contained form, a rapid introduction to the theory of distributions and its applications to partial differential equations, including computing fundamental solutions for the most basic differential operators: the Laplace, heat, wave, Lam\'e and Schrodinger operators.
Author |
: Hajer Bahouri |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 530 |
Release |
: 2011-01-03 |
ISBN-10 |
: 9783642168307 |
ISBN-13 |
: 3642168302 |
Rating |
: 4/5 (07 Downloads) |
Synopsis Fourier Analysis and Nonlinear Partial Differential Equations by : Hajer Bahouri
In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schrödinger equations. It also offers more sophisticated models originating from fluid mechanics (in particular the incompressible and compressible Navier-Stokes equations) or general relativity. It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations.
Author |
: Alberto P. Calderón |
Publisher |
: University of Chicago Press |
Total Pages |
: 388 |
Release |
: 1999 |
ISBN-10 |
: 0226104567 |
ISBN-13 |
: 9780226104560 |
Rating |
: 4/5 (67 Downloads) |
Synopsis Harmonic Analysis and Partial Differential Equations by : Alberto P. Calderón
Alberto P. Calderón (1920-1998) was one of this century's leading mathematical analysts. His contributions, characterized by great originality and depth, have changed the way researchers approach and think about everything from harmonic analysis to partial differential equations and from signal processing to tomography. In addition, he helped define the "Chicago school" of analysis, which remains influential to this day. In 1996, more than 300 mathematicians from around the world gathered in Chicago for a conference on harmonic analysis and partial differential equations held in Calderón's honor. This volume originated in papers given there and presents timely syntheses of several major fields of mathematics as well as original research articles contributed by some of the finest scholars working in these areas. An important addition to the literature, this book is essential reading for researchers in these and other related fields.
Author |
: Michael E. Taylor |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 734 |
Release |
: 2010-11-02 |
ISBN-10 |
: 9781441970497 |
ISBN-13 |
: 1441970495 |
Rating |
: 4/5 (97 Downloads) |
Synopsis Partial Differential Equations III by : Michael E. Taylor
The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear diffusion problems are studied. It also introduces such analytical tools as the theory of L Sobolev spaces, H lder spaces, Hardy spaces, and Morrey spaces, and also a development of Calderon-Zygmund theory and paradifferential operator calculus. The book is aimed at graduate students in mathematics, and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis and complex analysis
Author |
: Michael E. Taylor |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 673 |
Release |
: 2010-10-29 |
ISBN-10 |
: 9781441970558 |
ISBN-13 |
: 144197055X |
Rating |
: 4/5 (58 Downloads) |
Synopsis Partial Differential Equations I by : Michael E. Taylor
The first of three volumes on partial differential equations, this one introduces basic examples arising in continuum mechanics, electromagnetism, complex analysis and other areas, and develops a number of tools for their solution, in particular Fourier analysis, distribution theory, and Sobolev spaces. These tools are then applied to the treatment of basic problems in linear PDE, including the Laplace equation, heat equation, and wave equation, as well as more general elliptic, parabolic, and hyperbolic equations.The book is targeted at graduate students in mathematics and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis.
Author |
: Baoxiang Wang |
Publisher |
: World Scientific |
Total Pages |
: 298 |
Release |
: 2011-08-10 |
ISBN-10 |
: 9789814458399 |
ISBN-13 |
: 9814458392 |
Rating |
: 4/5 (99 Downloads) |
Synopsis Harmonic Analysis Method For Nonlinear Evolution Equations, I by : Baoxiang Wang
This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrödinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those equations is systematically studied by using the harmonic analysis methods.This book is self-contained and may also be used as an advanced textbook by graduate students in analysis and PDE subjects and even ambitious undergraduate students.
Author |
: Lars Hörmander |
Publisher |
: Springer |
Total Pages |
: 462 |
Release |
: 1990-08-10 |
ISBN-10 |
: 354052343X |
ISBN-13 |
: 9783540523437 |
Rating |
: 4/5 (3X Downloads) |
Synopsis The Analysis of Linear Partial Differential Operators I by : Lars Hörmander
The main change in this edition is the inclusion of exercises with answers and hints. This is meant to emphasize that this volume has been written as a general course in modern analysis on a graduate student level and not only as the beginning of a specialized course in partial differen tial equations. In particular, it could also serve as an introduction to harmonic analysis. Exercises are given primarily to the sections of gen eral interest; there are none to the last two chapters. Most of the exercises are just routine problems meant to give some familiarity with standard use of the tools introduced in the text. Others are extensions of the theory presented there. As a rule rather complete though brief solutions are then given in the answers and hints. To a large extent the exercises have been taken over from courses or examinations given by Anders Melin or myself at the University of Lund. I am grateful to Anders Melin for letting me use the problems originating from him and for numerous valuable comments on this collection. As in the revised printing of Volume II, a number of minor flaws have also been corrected in this edition. Many of these have been called to my attention by the Russian translators of the first edition, and I wish to thank them for our excellent collaboration.
Author |
: Haim Brezis |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 600 |
Release |
: 2010-11-02 |
ISBN-10 |
: 9780387709147 |
ISBN-13 |
: 0387709142 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Functional Analysis, Sobolev Spaces and Partial Differential Equations by : Haim Brezis
This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Author |
: Nakhlé H. Asmar |
Publisher |
: |
Total Pages |
: 904 |
Release |
: 2002 |
ISBN-10 |
: UVA:X004635768 |
ISBN-13 |
: |
Rating |
: 4/5 (68 Downloads) |
Synopsis Applied Complex Analysis with Partial Differential Equations by : Nakhlé H. Asmar
This reader-friendly book presents traditional material using a modern approach that invites the use of technology. Abundant exercises, examples, and graphics make it a comprehensive and visually appealing resource. Chapter topics include complex numbers and functions, analytic functions, complex integration, complex series, residues: applications and theory, conformal mapping, partial differential equations: methods and applications, transform methods, and partial differential equations in polar and spherical coordinates. For engineers and physicists in need of a quick reference tool.
Author |
: Ovidiu Calin |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 285 |
Release |
: 2006-03-15 |
ISBN-10 |
: 9780817644215 |
ISBN-13 |
: 0817644210 |
Rating |
: 4/5 (15 Downloads) |
Synopsis Geometric Mechanics on Riemannian Manifolds by : Ovidiu Calin
* A geometric approach to problems in physics, many of which cannot be solved by any other methods * Text is enriched with good examples and exercises at the end of every chapter * Fine for a course or seminar directed at grad and adv. undergrad students interested in elliptic and hyperbolic differential equations, differential geometry, calculus of variations, quantum mechanics, and physics