Turing Computability
Download Turing Computability full books in PDF, epub, and Kindle. Read online free Turing Computability ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Robert I. Soare |
Publisher |
: Springer |
Total Pages |
: 289 |
Release |
: 2016-06-20 |
ISBN-10 |
: 9783642319334 |
ISBN-13 |
: 3642319335 |
Rating |
: 4/5 (34 Downloads) |
Synopsis Turing Computability by : Robert I. Soare
Turing's famous 1936 paper introduced a formal definition of a computing machine, a Turing machine. This model led to both the development of actual computers and to computability theory, the study of what machines can and cannot compute. This book presents classical computability theory from Turing and Post to current results and methods, and their use in studying the information content of algebraic structures, models, and their relation to Peano arithmetic. The author presents the subject as an art to be practiced, and an art in the aesthetic sense of inherent beauty which all mathematicians recognize in their subject. Part I gives a thorough development of the foundations of computability, from the definition of Turing machines up to finite injury priority arguments. Key topics include relative computability, and computably enumerable sets, those which can be effectively listed but not necessarily effectively decided, such as the theorems of Peano arithmetic. Part II includes the study of computably open and closed sets of reals and basis and nonbasis theorems for effectively closed sets. Part III covers minimal Turing degrees. Part IV is an introduction to games and their use in proving theorems. Finally, Part V offers a short history of computability theory. The author has honed the content over decades according to feedback from students, lecturers, and researchers around the world. Most chapters include exercises, and the material is carefully structured according to importance and difficulty. The book is suitable for advanced undergraduate and graduate students in computer science and mathematics and researchers engaged with computability and mathematical logic.
Author |
: B. Jack Copeland |
Publisher |
: MIT Press |
Total Pages |
: 373 |
Release |
: 2013-06-07 |
ISBN-10 |
: 9780262018999 |
ISBN-13 |
: 0262018993 |
Rating |
: 4/5 (99 Downloads) |
Synopsis Computability by : B. Jack Copeland
Computer scientists, mathematicians, and philosophers discuss the conceptual foundations of the notion of computability as well as recent theoretical developments. In the 1930s a series of seminal works published by Alan Turing, Kurt Gödel, Alonzo Church, and others established the theoretical basis for computability. This work, advancing precise characterizations of effective, algorithmic computability, was the culmination of intensive investigations into the foundations of mathematics. In the decades since, the theory of computability has moved to the center of discussions in philosophy, computer science, and cognitive science. In this volume, distinguished computer scientists, mathematicians, logicians, and philosophers consider the conceptual foundations of computability in light of our modern understanding.Some chapters focus on the pioneering work by Turing, Gödel, and Church, including the Church-Turing thesis and Gödel's response to Church's and Turing's proposals. Other chapters cover more recent technical developments, including computability over the reals, Gödel's influence on mathematical logic and on recursion theory and the impact of work by Turing and Emil Post on our theoretical understanding of online and interactive computing; and others relate computability and complexity to issues in the philosophy of mind, the philosophy of science, and the philosophy of mathematics.ContributorsScott Aaronson, Dorit Aharonov, B. Jack Copeland, Martin Davis, Solomon Feferman, Saul Kripke, Carl J. Posy, Hilary Putnam, Oron Shagrir, Stewart Shapiro, Wilfried Sieg, Robert I. Soare, Umesh V. Vazirani
Author |
: Charles Petzold |
Publisher |
: John Wiley & Sons |
Total Pages |
: 391 |
Release |
: 2008-06-16 |
ISBN-10 |
: 9780470229057 |
ISBN-13 |
: 0470229055 |
Rating |
: 4/5 (57 Downloads) |
Synopsis The Annotated Turing by : Charles Petzold
Programming Legend Charles Petzold unlocks the secrets of the extraordinary and prescient 1936 paper by Alan M. Turing Mathematician Alan Turing invented an imaginary computer known as the Turing Machine; in an age before computers, he explored the concept of what it meant to be computable, creating the field of computability theory in the process, a foundation of present-day computer programming. The book expands Turing’s original 36-page paper with additional background chapters and extensive annotations; the author elaborates on and clarifies many of Turing’s statements, making the original difficult-to-read document accessible to present day programmers, computer science majors, math geeks, and others. Interwoven into the narrative are the highlights of Turing’s own life: his years at Cambridge and Princeton, his secret work in cryptanalysis during World War II, his involvement in seminal computer projects, his speculations about artificial intelligence, his arrest and prosecution for the crime of "gross indecency," and his early death by apparent suicide at the age of 41.
Author |
: Borut Robič |
Publisher |
: Springer Nature |
Total Pages |
: 422 |
Release |
: 2020-11-13 |
ISBN-10 |
: 9783662624210 |
ISBN-13 |
: 3662624214 |
Rating |
: 4/5 (10 Downloads) |
Synopsis The Foundations of Computability Theory by : Borut Robič
This book offers an original and informative view of the development of fundamental concepts of computability theory. The treatment is put into historical context, emphasizing the motivation for ideas as well as their logical and formal development. In Part I the author introduces computability theory, with chapters on the foundational crisis of mathematics in the early twentieth century, and formalism. In Part II he explains classical computability theory, with chapters on the quest for formalization, the Turing Machine, and early successes such as defining incomputable problems, c.e. (computably enumerable) sets, and developing methods for proving incomputability. In Part III he explains relative computability, with chapters on computation with external help, degrees of unsolvability, the Turing hierarchy of unsolvability, the class of degrees of unsolvability, c.e. degrees and the priority method, and the arithmetical hierarchy. Finally, in the new Part IV the author revisits the computability (Church-Turing) thesis in greater detail. He offers a systematic and detailed account of its origins, evolution, and meaning, he describes more powerful, modern versions of the thesis, and he discusses recent speculative proposals for new computing paradigms such as hypercomputing. This is a gentle introduction from the origins of computability theory up to current research, and it will be of value as a textbook and guide for advanced undergraduate and graduate students and researchers in the domains of computability theory and theoretical computer science. This new edition is completely revised, with almost one hundred pages of new material. In particular the author applied more up-to-date, more consistent terminology, and he addressed some notational redundancies and minor errors. He developed a glossary relating to computability theory, expanded the bibliographic references with new entries, and added the new part described above and other new sections.
Author |
: Neil D. Jones |
Publisher |
: MIT Press |
Total Pages |
: 494 |
Release |
: 1997 |
ISBN-10 |
: 0262100649 |
ISBN-13 |
: 9780262100649 |
Rating |
: 4/5 (49 Downloads) |
Synopsis Computability and Complexity by : Neil D. Jones
Computability and complexity theory should be of central concern to practitioners as well as theorists. Unfortunately, however, the field is known for its impenetrability. Neil Jones's goal as an educator and author is to build a bridge between computability and complexity theory and other areas of computer science, especially programming. In a shift away from the Turing machine- and G�del number-oriented classical approaches, Jones uses concepts familiar from programming languages to make computability and complexity more accessible to computer scientists and more applicable to practical programming problems. According to Jones, the fields of computability and complexity theory, as well as programming languages and semantics, have a great deal to offer each other. Computability and complexity theory have a breadth, depth, and generality not often seen in programming languages. The programming language community, meanwhile, has a firm grasp of algorithm design, presentation, and implementation. In addition, programming languages sometimes provide computational models that are more realistic in certain crucial aspects than traditional models. New results in the book include a proof that constant time factors do matter for its programming-oriented model of computation. (In contrast, Turing machines have a counterintuitive "constant speedup" property: that almost any program can be made to run faster, by any amount. Its proof involves techniques irrelevant to practice.) Further results include simple characterizations in programming terms of the central complexity classes PTIME and LOGSPACE, and a new approach to complete problems for NLOGSPACE, PTIME, NPTIME, and PSPACE, uniformly based on Boolean programs. Foundations of Computing series
Author |
: Neil D. Jones |
Publisher |
: Academic Press |
Total Pages |
: 169 |
Release |
: 2014-06-20 |
ISBN-10 |
: 9781483218489 |
ISBN-13 |
: 1483218481 |
Rating |
: 4/5 (89 Downloads) |
Synopsis Computability Theory by : Neil D. Jones
Computability Theory: An Introduction provides information pertinent to the major concepts, constructions, and theorems of the elementary theory of computability of recursive functions. This book provides mathematical evidence for the validity of the Church–Turing thesis. Organized into six chapters, this book begins with an overview of the concept of effective process so that a clear understanding of the effective computability of partial and total functions is obtained. This text then introduces a formal development of the equivalence of Turing machine computability, enumerability, and decidability with other formulations. Other chapters consider the formulas of the predicate calculus, systems of recursion equations, and Post's production systems. This book discusses as well the fundamental properties of the partial recursive functions and the recursively enumerable sets. The final chapter deals with different formulations of the basic ideas of computability that are equivalent to Turing-computability. This book is a valuable resource for undergraduate or graduate students.
Author |
: S. Barry Cooper |
Publisher |
: CRC Press |
Total Pages |
: 420 |
Release |
: 2017-09-06 |
ISBN-10 |
: 9781420057560 |
ISBN-13 |
: 1420057561 |
Rating |
: 4/5 (60 Downloads) |
Synopsis Computability Theory by : S. Barry Cooper
Computability theory originated with the seminal work of Gödel, Church, Turing, Kleene and Post in the 1930s. This theory includes a wide spectrum of topics, such as the theory of reducibilities and their degree structures, computably enumerable sets and their automorphisms, and subrecursive hierarchy classifications. Recent work in computability theory has focused on Turing definability and promises to have far-reaching mathematical, scientific, and philosophical consequences. Written by a leading researcher, Computability Theory provides a concise, comprehensive, and authoritative introduction to contemporary computability theory, techniques, and results. The basic concepts and techniques of computability theory are placed in their historical, philosophical and logical context. This presentation is characterized by an unusual breadth of coverage and the inclusion of advanced topics not to be found elsewhere in the literature at this level. The book includes both the standard material for a first course in computability and more advanced looks at degree structures, forcing, priority methods, and determinacy. The final chapter explores a variety of computability applications to mathematics and science. Computability Theory is an invaluable text, reference, and guide to the direction of current research in the field. Nowhere else will you find the techniques and results of this beautiful and basic subject brought alive in such an approachable and lively way.
Author |
: Nicholas Pippenger |
Publisher |
: Cambridge University Press |
Total Pages |
: 268 |
Release |
: 1997-05-28 |
ISBN-10 |
: 0521553806 |
ISBN-13 |
: 9780521553803 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Theories of Computability by : Nicholas Pippenger
A mathematically sophisticated introduction to Turing's theory, Boolean functions, automata, and formal languages.
Author |
: Dexter C. Kozen |
Publisher |
: Springer |
Total Pages |
: 399 |
Release |
: 2013-11-11 |
ISBN-10 |
: 9783642857065 |
ISBN-13 |
: 364285706X |
Rating |
: 4/5 (65 Downloads) |
Synopsis Automata and Computability by : Dexter C. Kozen
These are my lecture notes from CS381/481: Automata and Computability Theory, a one-semester senior-level course I have taught at Cornell Uni versity for many years. I took this course myself in thc fall of 1974 as a first-year Ph.D. student at Cornell from Juris Hartmanis and have been in love with the subject ever sin,:e. The course is required for computer science majors at Cornell. It exists in two forms: CS481, an honors version; and CS381, a somewhat gentler paced version. The syllabus is roughly the same, but CS481 go es deeper into thc subject, covers more material, and is taught at a more abstract level. Students are encouraged to start off in one or the other, then switch within the first few weeks if they find the other version more suitaLle to their level of mathematical skill. The purpose of t.hc course is twofold: to introduce computer science students to the rieh heritage of models and abstractions that have arisen over the years; and to dew!c'p the capacity to form abstractions of their own and reason in terms of them.
Author |
: George S. Boolos |
Publisher |
: Cambridge University Press |
Total Pages |
: 365 |
Release |
: 2007-09-17 |
ISBN-10 |
: 9780521877527 |
ISBN-13 |
: 0521877520 |
Rating |
: 4/5 (27 Downloads) |
Synopsis Computability and Logic by : George S. Boolos
This fifth edition of 'Computability and Logic' covers not just the staple topics of an intermediate logic course such as Godel's incompleteness theorems, but also optional topics that include Turing's theory of computability and Ramsey's theorem.