The Foundations Of Computability Theory
Download The Foundations Of Computability Theory full books in PDF, epub, and Kindle. Read online free The Foundations Of Computability Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Borut Robič |
Publisher |
: Springer Nature |
Total Pages |
: 422 |
Release |
: 2020-11-13 |
ISBN-10 |
: 9783662624210 |
ISBN-13 |
: 3662624214 |
Rating |
: 4/5 (10 Downloads) |
Synopsis The Foundations of Computability Theory by : Borut Robič
This book offers an original and informative view of the development of fundamental concepts of computability theory. The treatment is put into historical context, emphasizing the motivation for ideas as well as their logical and formal development. In Part I the author introduces computability theory, with chapters on the foundational crisis of mathematics in the early twentieth century, and formalism. In Part II he explains classical computability theory, with chapters on the quest for formalization, the Turing Machine, and early successes such as defining incomputable problems, c.e. (computably enumerable) sets, and developing methods for proving incomputability. In Part III he explains relative computability, with chapters on computation with external help, degrees of unsolvability, the Turing hierarchy of unsolvability, the class of degrees of unsolvability, c.e. degrees and the priority method, and the arithmetical hierarchy. Finally, in the new Part IV the author revisits the computability (Church-Turing) thesis in greater detail. He offers a systematic and detailed account of its origins, evolution, and meaning, he describes more powerful, modern versions of the thesis, and he discusses recent speculative proposals for new computing paradigms such as hypercomputing. This is a gentle introduction from the origins of computability theory up to current research, and it will be of value as a textbook and guide for advanced undergraduate and graduate students and researchers in the domains of computability theory and theoretical computer science. This new edition is completely revised, with almost one hundred pages of new material. In particular the author applied more up-to-date, more consistent terminology, and he addressed some notational redundancies and minor errors. He developed a glossary relating to computability theory, expanded the bibliographic references with new entries, and added the new part described above and other new sections.
Author |
: E.R. Griffor |
Publisher |
: Elsevier |
Total Pages |
: 741 |
Release |
: 1999-10-01 |
ISBN-10 |
: 9780080533049 |
ISBN-13 |
: 0080533043 |
Rating |
: 4/5 (49 Downloads) |
Synopsis Handbook of Computability Theory by : E.R. Griffor
The chapters of this volume all have their own level of presentation. The topics have been chosen based on the active research interest associated with them. Since the interest in some topics is older than that in others, some presentations contain fundamental definitions and basic results while others relate very little of the elementary theory behind them and aim directly toward an exposition of advanced results. Presentations of the latter sort are in some cases restricted to a short survey of recent results (due to the complexity of the methods and proofs themselves). Hence the variation in level of presentation from chapter to chapter only reflects the conceptual situation itself. One example of this is the collective efforts to develop an acceptable theory of computation on the real numbers. The last two decades has seen at least two new definitions of effective operations on the real numbers.
Author |
: Carol Critchlow |
Publisher |
: |
Total Pages |
: 256 |
Release |
: 2011 |
ISBN-10 |
: OCLC:1000322544 |
ISBN-13 |
: |
Rating |
: 4/5 (44 Downloads) |
Synopsis Foundations of Computation by : Carol Critchlow
Foundations of Computation is a free textbook for a one-semester course in theoretical computer science. It has been used for several years in a course at Hobart and William Smith Colleges. The course has no prerequisites other than introductory computer programming. The first half of the course covers material on logic, sets, and functions that would often be taught in a course in discrete mathematics. The second part covers material on automata, formal languages and grammar that would ordinarily be encountered in an upper level course in theoretical computer science.
Author |
: A. Sernadas |
Publisher |
: |
Total Pages |
: 0 |
Release |
: 2008 |
ISBN-10 |
: 1904987885 |
ISBN-13 |
: 9781904987888 |
Rating |
: 4/5 (85 Downloads) |
Synopsis Foundations of Logic and Theory of Computation by : A. Sernadas
The book provides a self-contained introduction to mathematical logic and computability theory for students of mathematics or computer science. It is organized around the failures and successes of Hilbert's programme for the formalization of Mathematics. It is widely known that the programme failed with Gödel's incompleteness theorems and related negative results about arithmetic. Unfortunately, the positive outcomes of the programme are less well known, even among mathematicians. The book covers key successes, like Gödel's proof of the completeness of first-order logic, Gentzen's proof of its consistency by purely symbolic means, and the decidability of a couple of useful theories. The book also tries to convey the message that Hilbert's programme made a significant contribution to the advent of the computer as it is nowadays understood and, thus, to the latest industrial revolution. Part I of the book addresses Hilbert's programme and computability. Part II presents first-order logic, including Gödel's completeness theorem and Gentzen's consistency theorem. Part III is focused on arithmetic, representability of computable maps, Gödel's incompleteness theorems and decidability of Presburger arithmetic. Part IV provides detailed answers to selected exercises. The book can be used at late undergraduate level or early graduate level. An undergraduate course would concentrate on Parts I and II, leaving out the Gentzen calculus, and sketching the way to the 1st incompleteness theorem. A more advanced course might skip early material already known to the students and concentrate on the positive and negative results of Hilbert's programme, thus covering Gentzen's proof of consistency and Part III in full.
Author |
: Neil D. Jones |
Publisher |
: MIT Press |
Total Pages |
: 494 |
Release |
: 1997 |
ISBN-10 |
: 0262100649 |
ISBN-13 |
: 9780262100649 |
Rating |
: 4/5 (49 Downloads) |
Synopsis Computability and Complexity by : Neil D. Jones
Computability and complexity theory should be of central concern to practitioners as well as theorists. Unfortunately, however, the field is known for its impenetrability. Neil Jones's goal as an educator and author is to build a bridge between computability and complexity theory and other areas of computer science, especially programming. In a shift away from the Turing machine- and G�del number-oriented classical approaches, Jones uses concepts familiar from programming languages to make computability and complexity more accessible to computer scientists and more applicable to practical programming problems. According to Jones, the fields of computability and complexity theory, as well as programming languages and semantics, have a great deal to offer each other. Computability and complexity theory have a breadth, depth, and generality not often seen in programming languages. The programming language community, meanwhile, has a firm grasp of algorithm design, presentation, and implementation. In addition, programming languages sometimes provide computational models that are more realistic in certain crucial aspects than traditional models. New results in the book include a proof that constant time factors do matter for its programming-oriented model of computation. (In contrast, Turing machines have a counterintuitive "constant speedup" property: that almost any program can be made to run faster, by any amount. Its proof involves techniques irrelevant to practice.) Further results include simple characterizations in programming terms of the central complexity classes PTIME and LOGSPACE, and a new approach to complete problems for NLOGSPACE, PTIME, NPTIME, and PSPACE, uniformly based on Boolean programs. Foundations of Computing series
Author |
: E. Börger |
Publisher |
: Elsevier |
Total Pages |
: 618 |
Release |
: 1989-07-01 |
ISBN-10 |
: 9780080887043 |
ISBN-13 |
: 008088704X |
Rating |
: 4/5 (43 Downloads) |
Synopsis Computability, Complexity, Logic by : E. Börger
The theme of this book is formed by a pair of concepts: the concept of formal language as carrier of the precise expression of meaning, facts and problems, and the concept of algorithm or calculus, i.e. a formally operating procedure for the solution of precisely described questions and problems.The book is a unified introduction to the modern theory of these concepts, to the way in which they developed first in mathematical logic and computability theory and later in automata theory, and to the theory of formal languages and complexity theory. Apart from considering the fundamental themes and classical aspects of these areas, the subject matter has been selected to give priority throughout to the new aspects of traditional questions, results and methods which have developed from the needs or knowledge of computer science and particularly of complexity theory.It is both a textbook for introductory courses in the above-mentioned disciplines as well as a monograph in which further results of new research are systematically presented and where an attempt is made to make explicit the connections and analogies between a variety of concepts and constructions.
Author |
: Maribel Fernandez |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 188 |
Release |
: 2009-04-14 |
ISBN-10 |
: 9781848824348 |
ISBN-13 |
: 1848824343 |
Rating |
: 4/5 (48 Downloads) |
Synopsis Models of Computation by : Maribel Fernandez
A Concise Introduction to Computation Models and Computability Theory provides an introduction to the essential concepts in computability, using several models of computation, from the standard Turing Machines and Recursive Functions, to the modern computation models inspired by quantum physics. An in-depth analysis of the basic concepts underlying each model of computation is provided. Divided into two parts, the first highlights the traditional computation models used in the first studies on computability: - Automata and Turing Machines; - Recursive functions and the Lambda-Calculus; - Logic-based computation models. and the second part covers object-oriented and interaction-based models. There is also a chapter on concurrency, and a final chapter on emergent computation models inspired by quantum mechanics. At the end of each chapter there is a discussion on the use of computation models in the design of programming languages.
Author |
: B. Jack Copeland |
Publisher |
: MIT Press |
Total Pages |
: 373 |
Release |
: 2013-06-07 |
ISBN-10 |
: 9780262018999 |
ISBN-13 |
: 0262018993 |
Rating |
: 4/5 (99 Downloads) |
Synopsis Computability by : B. Jack Copeland
Computer scientists, mathematicians, and philosophers discuss the conceptual foundations of the notion of computability as well as recent theoretical developments. In the 1930s a series of seminal works published by Alan Turing, Kurt Gödel, Alonzo Church, and others established the theoretical basis for computability. This work, advancing precise characterizations of effective, algorithmic computability, was the culmination of intensive investigations into the foundations of mathematics. In the decades since, the theory of computability has moved to the center of discussions in philosophy, computer science, and cognitive science. In this volume, distinguished computer scientists, mathematicians, logicians, and philosophers consider the conceptual foundations of computability in light of our modern understanding.Some chapters focus on the pioneering work by Turing, Gödel, and Church, including the Church-Turing thesis and Gödel's response to Church's and Turing's proposals. Other chapters cover more recent technical developments, including computability over the reals, Gödel's influence on mathematical logic and on recursion theory and the impact of work by Turing and Emil Post on our theoretical understanding of online and interactive computing; and others relate computability and complexity to issues in the philosophy of mind, the philosophy of science, and the philosophy of mathematics.ContributorsScott Aaronson, Dorit Aharonov, B. Jack Copeland, Martin Davis, Solomon Feferman, Saul Kripke, Carl J. Posy, Hilary Putnam, Oron Shagrir, Stewart Shapiro, Wilfried Sieg, Robert I. Soare, Umesh V. Vazirani
Author |
: Robert I. Soare |
Publisher |
: Springer |
Total Pages |
: 289 |
Release |
: 2016-06-20 |
ISBN-10 |
: 9783642319334 |
ISBN-13 |
: 3642319335 |
Rating |
: 4/5 (34 Downloads) |
Synopsis Turing Computability by : Robert I. Soare
Turing's famous 1936 paper introduced a formal definition of a computing machine, a Turing machine. This model led to both the development of actual computers and to computability theory, the study of what machines can and cannot compute. This book presents classical computability theory from Turing and Post to current results and methods, and their use in studying the information content of algebraic structures, models, and their relation to Peano arithmetic. The author presents the subject as an art to be practiced, and an art in the aesthetic sense of inherent beauty which all mathematicians recognize in their subject. Part I gives a thorough development of the foundations of computability, from the definition of Turing machines up to finite injury priority arguments. Key topics include relative computability, and computably enumerable sets, those which can be effectively listed but not necessarily effectively decided, such as the theorems of Peano arithmetic. Part II includes the study of computably open and closed sets of reals and basis and nonbasis theorems for effectively closed sets. Part III covers minimal Turing degrees. Part IV is an introduction to games and their use in proving theorems. Finally, Part V offers a short history of computability theory. The author has honed the content over decades according to feedback from students, lecturers, and researchers around the world. Most chapters include exercises, and the material is carefully structured according to importance and difficulty. The book is suitable for advanced undergraduate and graduate students in computer science and mathematics and researchers engaged with computability and mathematical logic.
Author |
: Richard L. Epstein |
Publisher |
: |
Total Pages |
: 299 |
Release |
: 2004 |
ISBN-10 |
: 049502886X |
ISBN-13 |
: 9780495028864 |
Rating |
: 4/5 (6X Downloads) |
Synopsis Computability by : Richard L. Epstein