Topology And Dynamics Of Chaos
Download Topology And Dynamics Of Chaos full books in PDF, epub, and Kindle. Read online free Topology And Dynamics Of Chaos ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Christophe Letellier |
Publisher |
: World Scientific |
Total Pages |
: 362 |
Release |
: 2013-01-11 |
ISBN-10 |
: 9789814434874 |
ISBN-13 |
: 9814434876 |
Rating |
: 4/5 (74 Downloads) |
Synopsis Topology And Dynamics Of Chaos: In Celebration Of Robert Gilmore's 70th Birthday by : Christophe Letellier
The book surveys how chaotic behaviors can be described with topological tools and how this approach occurred in chaos theory. Some modern applications are included.The contents are mainly devoted to topology, the main field of Robert Gilmore's works in dynamical systems. They include a review on the topological analysis of chaotic dynamics, works done in the past as well as the very latest issues. Most of the contributors who published during the 90's, including the very well-known scientists Otto Rössler, René Lozi and Joan Birman, have made a significant impact on chaos theory, discrete chaos, and knot theory, respectively.Very few books cover the topological approach for investigating nonlinear dynamical systems. The present book will provide not only some historical — not necessarily widely known — contributions (about the different types of chaos introduced by Rössler and not just the “Rössler attractor”; Gumowski and Mira's contributions in electronics; Poincaré's heritage in nonlinear dynamics) but also some recent applications in laser dynamics, biology, etc.
Author |
: Robert Gilmore |
Publisher |
: John Wiley & Sons |
Total Pages |
: 618 |
Release |
: 2012-09-19 |
ISBN-10 |
: 9783527639427 |
ISBN-13 |
: 352763942X |
Rating |
: 4/5 (27 Downloads) |
Synopsis The Topology of Chaos by : Robert Gilmore
A highly valued resource for those who wish to move from the introductory and preliminary understandings and the measurement of chaotic behavior to a more sophisticated and precise understanding of chaotic systems. The authors provide a deep understanding of the structure of strange attractors, how they are classified, and how the information required to identify and classify a strange attractor can be extracted from experimental data. In its first edition, the Topology of Chaos has been a valuable resource for physicist and mathematicians interested in the topological analysis of dynamical systems. Since its publication in 2002, important theoretical and experimental advances have put the topological analysis program on a firmer basis. This second edition includes relevant results and connects the material to other recent developments. Following significant improvements will be included: * A gentler introduction to the topological analysis of chaotic systems for the non expert which introduces the problems and questions that one commonly encounters when observing a chaotic dynamics and which are well addressed by a topological approach: existence of unstable periodic orbits, bifurcation sequences, multistability etc. * A new chapter is devoted to bounding tori which are essential for achieving generality as well as for understanding the influence of boundary conditions. * The new edition also reflects the progress which had been made towards extending topological analysis to higher-dimensional systems by proposing a new formalism where evolving triangulations replace braids. * There has also been much progress in the understanding of what is a good representation of a chaotic system, and therefore a new chapter is devoted to embeddings. * The chapter on topological analysis program will be expanded to cover traditional measures of chaos. This will help to connect those readers who are familiar with those measures and tests to the more sophisticated methodologies discussed in detail in this book. * The addition of the Appendix with both frequently asked and open questions with answers gathers the most essential points readers should keep in mind and guides to corresponding sections in the book. This will be of great help to those who want to selectively dive into the book and its treatments rather than reading it cover to cover. What makes this book special is its attempt to classify real physical systems (e.g. lasers) using topological techniques applied to real date (e.g. time series). Hence it has become the experimenter?s guidebook to reliable and sophisticated studies of experimental data for comparison with candidate relevant theoretical models, inevitable to physicists, mathematicians, and engineers studying low-dimensional chaotic systems.
Author |
: Vladimir G. Ivancevic |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 855 |
Release |
: 2008-05-31 |
ISBN-10 |
: 9783540793571 |
ISBN-13 |
: 3540793577 |
Rating |
: 4/5 (71 Downloads) |
Synopsis Complex Nonlinearity by : Vladimir G. Ivancevic
Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos–control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity – chaos – corresponds to the topology change of this curved geometrical stage, usually called configuration manifold. Chapter 3 elaborates on geometry and topology change in relation with complex nonlinearity and chaos. Chapter 4 develops general nonlinear dynamics, continuous and discrete, deterministic and stochastic, in the unique form of path integrals and their action-amplitude formalism. This most natural framework for representing both phase transitions and topology change starts with Feynman’s sum over histories, to be quickly generalized into the sum over geometries and topologies. The last Chapter puts all the previously developed techniques together and presents the unified form of complex nonlinearity. Here we have chaos, phase transitions, geometrical dynamics and topology change, all working together in the form of path integrals. The objective of this book is to provide a serious reader with a serious scientific tool that will enable them to actually perform a competitive research in modern complex nonlinearity. It includes a comprehensive bibliography on the subject and a detailed index. Target readership includes all researchers and students of complex nonlinear systems (in physics, mathematics, engineering, chemistry, biology, psychology, sociology, economics, medicine, etc.), working both in industry/clinics and academia.
Author |
: Steven H. Strogatz |
Publisher |
: CRC Press |
Total Pages |
: 532 |
Release |
: 2018-05-04 |
ISBN-10 |
: 9780429961113 |
ISBN-13 |
: 0429961111 |
Rating |
: 4/5 (13 Downloads) |
Synopsis Nonlinear Dynamics and Chaos by : Steven H. Strogatz
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Author |
: Marat Akhmet |
Publisher |
: Springer Nature |
Total Pages |
: 233 |
Release |
: 2020-01-01 |
ISBN-10 |
: 9783030358549 |
ISBN-13 |
: 3030358542 |
Rating |
: 4/5 (49 Downloads) |
Synopsis Dynamics with Chaos and Fractals by : Marat Akhmet
The book is concerned with the concepts of chaos and fractals, which are within the scopes of dynamical systems, geometry, measure theory, topology, and numerical analysis during the last several decades. It is revealed that a special kind of Poisson stable point, which we call an unpredictable point, gives rise to the existence of chaos in the quasi-minimal set. This is the first time in the literature that the description of chaos is initiated from a single motion. Chaos is now placed on the line of oscillations, and therefore, it is a subject of study in the framework of the theories of dynamical systems and differential equations, as in this book. The techniques introduced in the book make it possible to develop continuous and discrete dynamics which admit fractals as points of trajectories as well as orbits themselves. To provide strong arguments for the genericity of chaos in the real and abstract universe, the concept of abstract similarity is suggested.
Author |
: Robert Devaney |
Publisher |
: CRC Press |
Total Pages |
: 280 |
Release |
: 2018-03-09 |
ISBN-10 |
: 9780429981937 |
ISBN-13 |
: 0429981937 |
Rating |
: 4/5 (37 Downloads) |
Synopsis An Introduction To Chaotic Dynamical Systems by : Robert Devaney
The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.
Author |
: Christophe Letellier |
Publisher |
: World Scientific |
Total Pages |
: 362 |
Release |
: 2013 |
ISBN-10 |
: 9789814434867 |
ISBN-13 |
: 9814434868 |
Rating |
: 4/5 (67 Downloads) |
Synopsis Topology and Dynamics of Chaos by : Christophe Letellier
The book surveys how chaotic behaviors can be described with topological tools and how this approach occurred in chaos theory. Some modern applications are included. The contents are mainly devoted to topology, the main field of Robert Gilmore's works in dynamical systems. They include a review on the topological analysis of chaotic dynamics, works done in the past as well as the very latest issues. Most of the contributors who published during the 90's, including the very well-known scientists Otto RAssler, Ren(r) Lozi and Joan Birman, have made a significant impact on chaos theory, discrete chaos, and knot theory, respectively. Very few books cover the topological approach for investigating nonlinear dynamical systems. The present book will provide not only some historical OCo not necessarily widely known OCo contributions (about the different types of chaos introduced by RAssler and not just the RAssler attractor; Gumowski and Mira's contributions in electronics; Poincar(r)'s heritage in nonlinear dynamics) but also some recent applications in laser dynamics, biology,
Author |
: Jan Vries |
Publisher |
: Walter de Gruyter |
Total Pages |
: 516 |
Release |
: 2014-01-31 |
ISBN-10 |
: 9783110342406 |
ISBN-13 |
: 3110342405 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Topological Dynamical Systems by : Jan Vries
There is no recent elementary introduction to the theory of discrete dynamical systems that stresses the topological background of the topic. This book fills this gap: it deals with this theory as 'applied general topology'. We treat all important concepts needed to understand recent literature. The book is addressed primarily to graduate students. The prerequisites for understanding this book are modest: a certain mathematical maturity and course in General Topology are sufficient.
Author |
: Marco Pettini |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 460 |
Release |
: 2007-06-14 |
ISBN-10 |
: 9780387499574 |
ISBN-13 |
: 0387499571 |
Rating |
: 4/5 (74 Downloads) |
Synopsis Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics by : Marco Pettini
This book covers a new explanation of the origin of Hamiltonian chaos and its quantitative characterization. The author focuses on two main areas: Riemannian formulation of Hamiltonian dynamics, providing an original viewpoint about the relationship between geodesic instability and curvature properties of the mechanical manifolds; and a topological theory of thermodynamic phase transitions, relating topology changes of microscopic configuration space with the generation of singularities of thermodynamic observables. The book contains numerous illustrations throughout and it will interest both mathematicians and physicists.
Author |
: Geoffrey R. Goodson |
Publisher |
: Cambridge University Press |
Total Pages |
: 419 |
Release |
: 2017 |
ISBN-10 |
: 9781107112674 |
ISBN-13 |
: 1107112672 |
Rating |
: 4/5 (74 Downloads) |
Synopsis Chaotic Dynamics by : Geoffrey R. Goodson
This rigorous undergraduate introduction to dynamical systems is an accessible guide for mathematics students advancing from calculus.