An Introduction To Chaotic Dynamical Systems
Download An Introduction To Chaotic Dynamical Systems full books in PDF, epub, and Kindle. Read online free An Introduction To Chaotic Dynamical Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Robert Devaney |
Publisher |
: CRC Press |
Total Pages |
: 280 |
Release |
: 2018-03-09 |
ISBN-10 |
: 9780429981937 |
ISBN-13 |
: 0429981937 |
Rating |
: 4/5 (37 Downloads) |
Synopsis An Introduction To Chaotic Dynamical Systems by : Robert Devaney
The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.
Author |
: Kathleen Alligood |
Publisher |
: Springer |
Total Pages |
: 620 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783642592812 |
ISBN-13 |
: 3642592813 |
Rating |
: 4/5 (12 Downloads) |
Synopsis Chaos by : Kathleen Alligood
BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.
Author |
: Morris W. Hirsch |
Publisher |
: Academic Press |
Total Pages |
: 433 |
Release |
: 2004 |
ISBN-10 |
: 9780123497031 |
ISBN-13 |
: 0123497035 |
Rating |
: 4/5 (31 Downloads) |
Synopsis Differential Equations, Dynamical Systems, and an Introduction to Chaos by : Morris W. Hirsch
Thirty years in the making, this revised text by three of the world's leading mathematicians covers the dynamical aspects of ordinary differential equations. it explores the relations between dynamical systems and certain fields outside pure mathematics, and has become the standard textbook for graduate courses in this area. The Second Edition now brings students to the brink of contemporary research, starting from a background that includes only calculus and elementary linear algebra. The authors are tops in the field of advanced mathematics, including Steve Smale who is a recipient of.
Author |
: Robert L. Devaney |
Publisher |
: Hachette UK |
Total Pages |
: 231 |
Release |
: 1992-10-21 |
ISBN-10 |
: 9780813345475 |
ISBN-13 |
: 0813345472 |
Rating |
: 4/5 (75 Downloads) |
Synopsis A First Course In Chaotic Dynamical Systems by : Robert L. Devaney
A First Course in Chaotic Dynamical Systems: Theory and Experiment is the first book to introduce modern topics in dynamical systems at the undergraduate level. Accessible to readers with only a background in calculus, the book integrates both theory and computer experiments into its coverage of contemporary ideas in dynamics. It is designed as a gradual introduction to the basic mathematical ideas behind such topics as chaos, fractals, Newton's method, symbolic dynamics, the Julia set, and the Mandelbrot set, and includes biographies of some of the leading researchers in the field of dynamical systems. Mathematical and computer experiments are integrated throughout the text to help illustrate the meaning of the theorems presented.Chaotic Dynamical Systems Software, Labs 1–6 is a supplementary laboratory software package, available separately, that allows a more intuitive understanding of the mathematics behind dynamical systems theory. Combined with A First Course in Chaotic Dynamical Systems, it leads to a rich understanding of this emerging field.
Author |
: David P. Feldman |
Publisher |
: Princeton University Press |
Total Pages |
: 262 |
Release |
: 2019-08-06 |
ISBN-10 |
: 9780691161525 |
ISBN-13 |
: 0691161526 |
Rating |
: 4/5 (25 Downloads) |
Synopsis Chaos and Dynamical Systems by : David P. Feldman
Chaos and Dynamical Systems presents an accessible, clear introduction to dynamical systems and chaos theory, important and exciting areas that have shaped many scientific fields. While the rules governing dynamical systems are well-specified and simple, the behavior of many dynamical systems is remarkably complex. Of particular note, simple deterministic dynamical systems produce output that appears random and for which long-term prediction is impossible. Using little math beyond basic algebra, David Feldman gives readers a grounded, concrete, and concise overview. In initial chapters, Feldman introduces iterated functions and differential equations. He then surveys the key concepts and results to emerge from dynamical systems: chaos and the butterfly effect, deterministic randomness, bifurcations, universality, phase space, and strange attractors. Throughout, Feldman examines possible scientific implications of these phenomena for the study of complex systems, highlighting the relationships between simplicity and complexity, order and disorder. Filling the gap between popular accounts of dynamical systems and chaos and textbooks aimed at physicists and mathematicians, Chaos and Dynamical Systems will be highly useful not only to students at the undergraduate and advanced levels, but also to researchers in the natural, social, and biological sciences.
Author |
: G.C. Layek |
Publisher |
: Springer |
Total Pages |
: 632 |
Release |
: 2015-12-01 |
ISBN-10 |
: 9788132225560 |
ISBN-13 |
: 8132225562 |
Rating |
: 4/5 (60 Downloads) |
Synopsis An Introduction to Dynamical Systems and Chaos by : G.C. Layek
The book discusses continuous and discrete systems in systematic and sequential approaches for all aspects of nonlinear dynamics. The unique feature of the book is its mathematical theories on flow bifurcations, oscillatory solutions, symmetry analysis of nonlinear systems and chaos theory. The logically structured content and sequential orientation provide readers with a global overview of the topic. A systematic mathematical approach has been adopted, and a number of examples worked out in detail and exercises have been included. Chapters 1–8 are devoted to continuous systems, beginning with one-dimensional flows. Symmetry is an inherent character of nonlinear systems, and the Lie invariance principle and its algorithm for finding symmetries of a system are discussed in Chap. 8. Chapters 9–13 focus on discrete systems, chaos and fractals. Conjugacy relationship among maps and its properties are described with proofs. Chaos theory and its connection with fractals, Hamiltonian flows and symmetries of nonlinear systems are among the main focuses of this book. Over the past few decades, there has been an unprecedented interest and advances in nonlinear systems, chaos theory and fractals, which is reflected in undergraduate and postgraduate curricula around the world. The book is useful for courses in dynamical systems and chaos, nonlinear dynamics, etc., for advanced undergraduate and postgraduate students in mathematics, physics and engineering.
Author |
: Mario Martelli |
Publisher |
: John Wiley & Sons |
Total Pages |
: 347 |
Release |
: 2011-11-01 |
ISBN-10 |
: 9781118031124 |
ISBN-13 |
: 1118031121 |
Rating |
: 4/5 (24 Downloads) |
Synopsis Introduction to Discrete Dynamical Systems and Chaos by : Mario Martelli
A timely, accessible introduction to the mathematics of chaos. The past three decades have seen dramatic developments in the theory of dynamical systems, particularly regarding the exploration of chaotic behavior. Complex patterns of even simple processes arising in biology, chemistry, physics, engineering, economics, and a host of other disciplines have been investigated, explained, and utilized. Introduction to Discrete Dynamical Systems and Chaos makes these exciting and important ideas accessible to students and scientists by assuming, as a background, only the standard undergraduate training in calculus and linear algebra. Chaos is introduced at the outset and is then incorporated as an integral part of the theory of discrete dynamical systems in one or more dimensions. Both phase space and parameter space analysis are developed with ample exercises, more than 100 figures, and important practical examples such as the dynamics of atmospheric changes and neural networks. An appendix provides readers with clear guidelines on how to use Mathematica to explore discrete dynamical systems numerically. Selected programs can also be downloaded from a Wiley ftp site (address in preface). Another appendix lists possible projects that can be assigned for classroom investigation. Based on the author's 1993 book, but boasting at least 60% new, revised, and updated material, the present Introduction to Discrete Dynamical Systems and Chaos is a unique and extremely useful resource for all scientists interested in this active and intensely studied field.
Author |
: Stephen Wiggins |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 860 |
Release |
: 2006-04-18 |
ISBN-10 |
: 9780387217499 |
ISBN-13 |
: 0387217495 |
Rating |
: 4/5 (99 Downloads) |
Synopsis Introduction to Applied Nonlinear Dynamical Systems and Chaos by : Stephen Wiggins
This introduction to applied nonlinear dynamics and chaos places emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains a detailed glossary of terms. From the reviews: "Will serve as one of the most eminent introductions to the geometric theory of dynamical systems." --Monatshefte für Mathematik
Author |
: Edward Ott |
Publisher |
: Cambridge University Press |
Total Pages |
: 500 |
Release |
: 2002-08-22 |
ISBN-10 |
: 0521010845 |
ISBN-13 |
: 9780521010849 |
Rating |
: 4/5 (45 Downloads) |
Synopsis Chaos in Dynamical Systems by : Edward Ott
Over the past two decades scientists, mathematicians, and engineers have come to understand that a large variety of systems exhibit complicated evolution with time. This complicated behavior is known as chaos. In the new edition of this classic textbook Edward Ott has added much new material and has significantly increased the number of homework problems. The most important change is the addition of a completely new chapter on control and synchronization of chaos. Other changes include new material on riddled basins of attraction, phase locking of globally coupled oscillators, fractal aspects of fluid advection by Lagrangian chaotic flows, magnetic dynamos, and strange nonchaotic attractors. This new edition will be of interest to advanced undergraduates and graduate students in science, engineering, and mathematics taking courses in chaotic dynamics, as well as to researchers in the subject.
Author |
: John H. Argyris |
Publisher |
: Springer |
Total Pages |
: 884 |
Release |
: 2015-04-24 |
ISBN-10 |
: 9783662460429 |
ISBN-13 |
: 3662460424 |
Rating |
: 4/5 (29 Downloads) |
Synopsis An Exploration of Dynamical Systems and Chaos by : John H. Argyris
This book is conceived as a comprehensive and detailed text-book on non-linear dynamical systems with particular emphasis on the exploration of chaotic phenomena. The self-contained introductory presentation is addressed both to those who wish to study the physics of chaotic systems and non-linear dynamics intensively as well as those who are curious to learn more about the fascinating world of chaotic phenomena. Basic concepts like Poincaré section, iterated mappings, Hamiltonian chaos and KAM theory, strange attractors, fractal dimensions, Lyapunov exponents, bifurcation theory, self-similarity and renormalisation and transitions to chaos are thoroughly explained. To facilitate comprehension, mathematical concepts and tools are introduced in short sub-sections. The text is supported by numerous computer experiments and a multitude of graphical illustrations and colour plates emphasising the geometrical and topological characteristics of the underlying dynamics. This volume is a completely revised and enlarged second edition which comprises recently obtained research results of topical interest, and has been extended to include a new section on the basic concepts of probability theory. A completely new chapter on fully developed turbulence presents the successes of chaos theory, its limitations as well as future trends in the development of complex spatio-temporal structures. "This book will be of valuable help for my lectures" Hermann Haken, Stuttgart "This text-book should not be missing in any introductory lecture on non-linear systems and deterministic chaos" Wolfgang Kinzel, Würzburg “This well written book represents a comprehensive treatise on dynamical systems. It may serve as reference book for the whole field of nonlinear and chaotic systems and reports in a unique way on scientific developments of recent decades as well as important applications.” Joachim Peinke, Institute of Physics, Carl-von-Ossietzky University Oldenburg, Germany