Chaos In Dynamical Systems
Download Chaos In Dynamical Systems full books in PDF, epub, and Kindle. Read online free Chaos In Dynamical Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Edward Ott |
Publisher |
: Cambridge University Press |
Total Pages |
: 500 |
Release |
: 2002-08-22 |
ISBN-10 |
: 0521010845 |
ISBN-13 |
: 9780521010849 |
Rating |
: 4/5 (45 Downloads) |
Synopsis Chaos in Dynamical Systems by : Edward Ott
Over the past two decades scientists, mathematicians, and engineers have come to understand that a large variety of systems exhibit complicated evolution with time. This complicated behavior is known as chaos. In the new edition of this classic textbook Edward Ott has added much new material and has significantly increased the number of homework problems. The most important change is the addition of a completely new chapter on control and synchronization of chaos. Other changes include new material on riddled basins of attraction, phase locking of globally coupled oscillators, fractal aspects of fluid advection by Lagrangian chaotic flows, magnetic dynamos, and strange nonchaotic attractors. This new edition will be of interest to advanced undergraduates and graduate students in science, engineering, and mathematics taking courses in chaotic dynamics, as well as to researchers in the subject.
Author |
: David P. Feldman |
Publisher |
: Princeton University Press |
Total Pages |
: 262 |
Release |
: 2019-08-06 |
ISBN-10 |
: 9780691161525 |
ISBN-13 |
: 0691161526 |
Rating |
: 4/5 (25 Downloads) |
Synopsis Chaos and Dynamical Systems by : David P. Feldman
Chaos and Dynamical Systems presents an accessible, clear introduction to dynamical systems and chaos theory, important and exciting areas that have shaped many scientific fields. While the rules governing dynamical systems are well-specified and simple, the behavior of many dynamical systems is remarkably complex. Of particular note, simple deterministic dynamical systems produce output that appears random and for which long-term prediction is impossible. Using little math beyond basic algebra, David Feldman gives readers a grounded, concrete, and concise overview. In initial chapters, Feldman introduces iterated functions and differential equations. He then surveys the key concepts and results to emerge from dynamical systems: chaos and the butterfly effect, deterministic randomness, bifurcations, universality, phase space, and strange attractors. Throughout, Feldman examines possible scientific implications of these phenomena for the study of complex systems, highlighting the relationships between simplicity and complexity, order and disorder. Filling the gap between popular accounts of dynamical systems and chaos and textbooks aimed at physicists and mathematicians, Chaos and Dynamical Systems will be highly useful not only to students at the undergraduate and advanced levels, but also to researchers in the natural, social, and biological sciences.
Author |
: John H. Argyris |
Publisher |
: Springer |
Total Pages |
: 884 |
Release |
: 2015-04-24 |
ISBN-10 |
: 9783662460429 |
ISBN-13 |
: 3662460424 |
Rating |
: 4/5 (29 Downloads) |
Synopsis An Exploration of Dynamical Systems and Chaos by : John H. Argyris
This book is conceived as a comprehensive and detailed text-book on non-linear dynamical systems with particular emphasis on the exploration of chaotic phenomena. The self-contained introductory presentation is addressed both to those who wish to study the physics of chaotic systems and non-linear dynamics intensively as well as those who are curious to learn more about the fascinating world of chaotic phenomena. Basic concepts like Poincaré section, iterated mappings, Hamiltonian chaos and KAM theory, strange attractors, fractal dimensions, Lyapunov exponents, bifurcation theory, self-similarity and renormalisation and transitions to chaos are thoroughly explained. To facilitate comprehension, mathematical concepts and tools are introduced in short sub-sections. The text is supported by numerous computer experiments and a multitude of graphical illustrations and colour plates emphasising the geometrical and topological characteristics of the underlying dynamics. This volume is a completely revised and enlarged second edition which comprises recently obtained research results of topical interest, and has been extended to include a new section on the basic concepts of probability theory. A completely new chapter on fully developed turbulence presents the successes of chaos theory, its limitations as well as future trends in the development of complex spatio-temporal structures. "This book will be of valuable help for my lectures" Hermann Haken, Stuttgart "This text-book should not be missing in any introductory lecture on non-linear systems and deterministic chaos" Wolfgang Kinzel, Würzburg “This well written book represents a comprehensive treatise on dynamical systems. It may serve as reference book for the whole field of nonlinear and chaotic systems and reports in a unique way on scientific developments of recent decades as well as important applications.” Joachim Peinke, Institute of Physics, Carl-von-Ossietzky University Oldenburg, Germany
Author |
: Robert Devaney |
Publisher |
: CRC Press |
Total Pages |
: 280 |
Release |
: 2018-03-09 |
ISBN-10 |
: 9780429981937 |
ISBN-13 |
: 0429981937 |
Rating |
: 4/5 (37 Downloads) |
Synopsis An Introduction To Chaotic Dynamical Systems by : Robert Devaney
The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.
Author |
: Kathleen Alligood |
Publisher |
: Springer |
Total Pages |
: 620 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783642592812 |
ISBN-13 |
: 3642592813 |
Rating |
: 4/5 (12 Downloads) |
Synopsis Chaos by : Kathleen Alligood
BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.
Author |
: Steven H. Strogatz |
Publisher |
: CRC Press |
Total Pages |
: 532 |
Release |
: 2018-05-04 |
ISBN-10 |
: 9780429961113 |
ISBN-13 |
: 0429961111 |
Rating |
: 4/5 (13 Downloads) |
Synopsis Nonlinear Dynamics and Chaos by : Steven H. Strogatz
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Author |
: Ralph Abraham |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 257 |
Release |
: 2013-06-29 |
ISBN-10 |
: 9781461219361 |
ISBN-13 |
: 1461219361 |
Rating |
: 4/5 (61 Downloads) |
Synopsis Chaos in Discrete Dynamical Systems by : Ralph Abraham
The materials in the book and on the accompanying disc are not solely developed with only the researcher and professional in mind, but also with consideration for the student: most of this material has been class-tested by the authors. The book is packed with some 100 computer graphics to illustrate the material, and the CD-ROM contains full-colour animations tied directly to the subject matter of the book itself. The cross-platform CD also contains the program ENDO, which enables users to create their own 2-D imagery with X-Windows. Maple scripts are provided to allow readers to work directly with the code from which the graphics in the book were taken.
Author |
: Morris W. Hirsch |
Publisher |
: Academic Press |
Total Pages |
: 433 |
Release |
: 2004 |
ISBN-10 |
: 9780123497031 |
ISBN-13 |
: 0123497035 |
Rating |
: 4/5 (31 Downloads) |
Synopsis Differential Equations, Dynamical Systems, and an Introduction to Chaos by : Morris W. Hirsch
Thirty years in the making, this revised text by three of the world's leading mathematicians covers the dynamical aspects of ordinary differential equations. it explores the relations between dynamical systems and certain fields outside pure mathematics, and has become the standard textbook for graduate courses in this area. The Second Edition now brings students to the brink of contemporary research, starting from a background that includes only calculus and elementary linear algebra. The authors are tops in the field of advanced mathematics, including Steve Smale who is a recipient of.
Author |
: Stephen Wiggins |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 860 |
Release |
: 2006-04-18 |
ISBN-10 |
: 9780387217499 |
ISBN-13 |
: 0387217495 |
Rating |
: 4/5 (99 Downloads) |
Synopsis Introduction to Applied Nonlinear Dynamical Systems and Chaos by : Stephen Wiggins
This introduction to applied nonlinear dynamics and chaos places emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains a detailed glossary of terms. From the reviews: "Will serve as one of the most eminent introductions to the geometric theory of dynamical systems." --Monatshefte für Mathematik
Author |
: Marat Akhmet |
Publisher |
: Springer Nature |
Total Pages |
: 233 |
Release |
: 2020-01-01 |
ISBN-10 |
: 9783030358549 |
ISBN-13 |
: 3030358542 |
Rating |
: 4/5 (49 Downloads) |
Synopsis Dynamics with Chaos and Fractals by : Marat Akhmet
The book is concerned with the concepts of chaos and fractals, which are within the scopes of dynamical systems, geometry, measure theory, topology, and numerical analysis during the last several decades. It is revealed that a special kind of Poisson stable point, which we call an unpredictable point, gives rise to the existence of chaos in the quasi-minimal set. This is the first time in the literature that the description of chaos is initiated from a single motion. Chaos is now placed on the line of oscillations, and therefore, it is a subject of study in the framework of the theories of dynamical systems and differential equations, as in this book. The techniques introduced in the book make it possible to develop continuous and discrete dynamics which admit fractals as points of trajectories as well as orbits themselves. To provide strong arguments for the genericity of chaos in the real and abstract universe, the concept of abstract similarity is suggested.