Topological Insulators
Download Topological Insulators full books in PDF, epub, and Kindle. Read online free Topological Insulators ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: B. Andrei Bernevig |
Publisher |
: Princeton University Press |
Total Pages |
: 264 |
Release |
: 2013-04-07 |
ISBN-10 |
: 9781400846733 |
ISBN-13 |
: 1400846730 |
Rating |
: 4/5 (33 Downloads) |
Synopsis Topological Insulators and Topological Superconductors by : B. Andrei Bernevig
This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topological indices. The book also analyzes recent topics in condensed matter theory and concludes by surveying active subfields of research such as insulators with point-group symmetries and the stability of topological semimetals. Problems at the end of each chapter offer opportunities to test knowledge and engage with frontier research issues. Topological Insulators and Topological Superconductors will provide graduate students and researchers with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.
Author |
: Shun-Qing Shen |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 234 |
Release |
: 2013-01-11 |
ISBN-10 |
: 9783642328589 |
ISBN-13 |
: 364232858X |
Rating |
: 4/5 (89 Downloads) |
Synopsis Topological Insulators by : Shun-Qing Shen
Topological insulators are insulating in the bulk, but process metallic states present around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, the first of its kind on topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological insulators and related areas. Shun-Qing Shen is a Professor at the Department of Physics, the University of Hong Kong, China.
Author |
: János K. Asbóth |
Publisher |
: Springer |
Total Pages |
: 176 |
Release |
: 2016-02-22 |
ISBN-10 |
: 9783319256078 |
ISBN-13 |
: 3319256076 |
Rating |
: 4/5 (78 Downloads) |
Synopsis A Short Course on Topological Insulators by : János K. Asbóth
This course-based primer provides newcomers to the field with a concise introduction to some of the core topics in the emerging field of topological insulators. The aim is to provide a basic understanding of edge states, bulk topological invariants, and of the bulk--boundary correspondence with as simple mathematical tools as possible. The present approach uses noninteracting lattice models of topological insulators, building gradually on these to arrive from the simplest one-dimensional case (the Su-Schrieffer-Heeger model for polyacetylene) to two-dimensional time-reversal invariant topological insulators (the Bernevig-Hughes-Zhang model for HgTe). In each case the discussion of simple toy models is followed by the formulation of the general arguments regarding topological insulators. The only prerequisite for the reader is a working knowledge in quantum mechanics, the relevant solid state physics background is provided as part of this self-contained text, which is complemented by end-of-chapter problems.
Author |
: Frank Ortmann |
Publisher |
: John Wiley & Sons |
Total Pages |
: 434 |
Release |
: 2015-06-29 |
ISBN-10 |
: 9783527337026 |
ISBN-13 |
: 3527337024 |
Rating |
: 4/5 (26 Downloads) |
Synopsis Topological Insulators by : Frank Ortmann
There are only few discoveries and new technologies in physical sciences that have the potential to dramatically alter and revolutionize our electronic world. Topological insulators are one of them. The present book for the first time provides a full overview and in-depth knowledge about this hot topic in materials science and condensed matter physics. Techniques such as angle-resolved photoemission spectrometry (ARPES), advanced solid-state Nuclear Magnetic Resonance (NMR) or scanning-tunnel microscopy (STM) together with key principles of topological insulators such as spin-locked electronic states, the Dirac point, quantum Hall effects and Majorana fermions are illuminated in individual chapters and are described in a clear and logical form. Written by an international team of experts, many of them directly involved in the very first discovery of topological insulators, the book provides the readers with the knowledge they need to understand the electronic behavior of these unique materials. Being more than a reference work, this book is essential for newcomers and advanced researchers working in the field of topological insulators.
Author |
: Panagiotis Kotetes |
Publisher |
: Morgan & Claypool Publishers |
Total Pages |
: 216 |
Release |
: 2019-04-24 |
ISBN-10 |
: 9781681745176 |
ISBN-13 |
: 1681745178 |
Rating |
: 4/5 (76 Downloads) |
Synopsis Topological Insulators by : Panagiotis Kotetes
This book provides an introduction to topological matter with a focus on insulating bulk systems. A number of prerequisite concepts and tools are first laid out, including the notion of symmetry transformations, the band theory of semiconductors and aspects of electronic transport. The main part of the book discusses realistic models for both time-reversal-preserving and -violating topological insulators, as well as their characteristic responses to external perturbations. Special emphasis is given to the study of the anomalous electric, thermal, and thermoelectric transport properties, the theory of orbital magnetisation, and the polar Kerr effect. The topological models studied throughout this book become unified and generalised by means of the tenfold topological-classification framework and the respective systematic construction of topological invariants. This approach is further extended to topological superconductors and topological semimetals. This book covers a wide range of topics and aims at the transparent presentation of the technical aspects involved. For this purpose, homework problems are also provided in dedicated Hands-on sections. Given its structure and the required background level of the reader, this book is particularly recommended for graduate students or researchers who are new to the field.
Author |
: Huixia Luo |
Publisher |
: John Wiley & Sons |
Total Pages |
: 420 |
Release |
: 2019-03-12 |
ISBN-10 |
: 9781119407324 |
ISBN-13 |
: 111940732X |
Rating |
: 4/5 (24 Downloads) |
Synopsis Advanced Topological Insulators by : Huixia Luo
This book is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for researchers and graduate students preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with the fundamental description on the topological phases of matter such as one, two- and three-dimensional topological insulators, and methods and tools for topological material's investigations, topological insulators for advanced optoelectronic devices, topological superconductors, saturable absorber and in plasmonic devices. Advanced Topological Insulators provides researchers and graduate students with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.
Author |
: Emil Prodan |
Publisher |
: Springer |
Total Pages |
: 217 |
Release |
: 2016-02-05 |
ISBN-10 |
: 9783319293516 |
ISBN-13 |
: 3319293516 |
Rating |
: 4/5 (16 Downloads) |
Synopsis Bulk and Boundary Invariants for Complex Topological Insulators by : Emil Prodan
This monograph offers an overview of rigorous results on fermionic topological insulators from the complex classes, namely, those without symmetries or with just a chiral symmetry. Particular focus is on the stability of the topological invariants in the presence of strong disorder, on the interplay between the bulk and boundary invariants and on their dependence on magnetic fields. The first part presents motivating examples and the conjectures put forward by the physics community, together with a brief review of the experimental achievements. The second part develops an operator algebraic approach for the study of disordered topological insulators. This leads naturally to the use of analytical tools from K-theory and non-commutative geometry, such as cyclic cohomology, quantized calculus with Fredholm modules and index pairings. New results include a generalized Streda formula and a proof of the delocalized nature of surface states in topological insulators with non-trivial invariants. The concluding chapter connects the invariants to measurable quantities and thus presents a refined physical characterization of the complex topological insulators. This book is intended for advanced students in mathematical physics and researchers alike.
Author |
: |
Publisher |
: Elsevier |
Total Pages |
: 349 |
Release |
: 2013-11-23 |
ISBN-10 |
: 9780444633187 |
ISBN-13 |
: 0444633189 |
Rating |
: 4/5 (87 Downloads) |
Synopsis Topological Insulators by :
Topological Insulators, volume six in the Contemporary Concepts of Condensed Matter Series, describes the recent revolution in condensed matter physics that occurred in our understanding of crystalline solids. The book chronicles the work done worldwide that led to these discoveries and provides the reader with a comprehensive overview of the field. Starting in 2004, theorists began to explore the effect of topology on the physics of band insulators, a field previously considered well understood. However, the inclusion of topology brings key new elements into this old field. Whereas it was thought that all band insulators are essentially equivalent, the new theory predicts two distinct classes of band insulators in two spatial dimensions and 16 classes in three dimensions. These "topological" insulators exhibit a host of unusual physical properties, including topologically protected gapless surface states and exotic electromagnetic response, previously thought impossible in such systems. Within a short time, this new state of quantum matter, topological insulators, has been discovered experimentally both in 2D thin film structures and in 3D crystals and alloys. It appears that topological insulators are quite common in nature, and there are dozens of confirmed substances that exhibit this behavior. Theoretical and experimental studies of these materials are ongoing with the goal of attaining the fundamental understanding and exploiting them in future practical applications. - Usable as a textbook for graduate students and as a reference resource for professionals - Includes the most recent discoveries and visions for future technological applications - All authors are prominent in the field
Author |
: Gregory Tkachov |
Publisher |
: CRC Press |
Total Pages |
: 180 |
Release |
: 2015-10-14 |
ISBN-10 |
: 9789814613262 |
ISBN-13 |
: 9814613266 |
Rating |
: 4/5 (62 Downloads) |
Synopsis Topological Insulators by : Gregory Tkachov
This book is the result of dynamic developments that have occurred in condensed matter physics after the recent discovery of a new class of electronic materials: topological insulators. A topological insulator is a material that behaves as a band insulator in its interior, while acting as a metallic conductor at its surface. The surface current car
Author |
: David Vanderbilt |
Publisher |
: Cambridge University Press |
Total Pages |
: 395 |
Release |
: 2018-11-01 |
ISBN-10 |
: 9781108661300 |
ISBN-13 |
: 1108661300 |
Rating |
: 4/5 (00 Downloads) |
Synopsis Berry Phases in Electronic Structure Theory by : David Vanderbilt
Over the past twenty-five years, mathematical concepts associated with geometric phases have come to occupy a central place in our modern understanding of the physics of electrons in solids. These 'Berry phases' describe the global phase acquired by a quantum state as the Hamiltonian is changed. Beginning at an elementary level, this book provides a pedagogical introduction to the important role of Berry phases and curvatures, and outlines their great influence upon many key properties of electrons in solids, including electric polarization, anomalous Hall conductivity, and the nature of the topological insulating state. It focuses on drawing connections between physical concepts and provides a solid framework for their integration, enabling researchers and students to explore and develop links to related fields. Computational examples and exercises throughout provide an added dimension to the book, giving readers the opportunity to explore the central concepts in a practical and engaging way.