A Short Course on Topological Insulators

A Short Course on Topological Insulators
Author :
Publisher : Springer
Total Pages : 176
Release :
ISBN-10 : 9783319256078
ISBN-13 : 3319256076
Rating : 4/5 (78 Downloads)

Synopsis A Short Course on Topological Insulators by : János K. Asbóth

This course-based primer provides newcomers to the field with a concise introduction to some of the core topics in the emerging field of topological insulators. The aim is to provide a basic understanding of edge states, bulk topological invariants, and of the bulk--boundary correspondence with as simple mathematical tools as possible. The present approach uses noninteracting lattice models of topological insulators, building gradually on these to arrive from the simplest one-dimensional case (the Su-Schrieffer-Heeger model for polyacetylene) to two-dimensional time-reversal invariant topological insulators (the Bernevig-Hughes-Zhang model for HgTe). In each case the discussion of simple toy models is followed by the formulation of the general arguments regarding topological insulators. The only prerequisite for the reader is a working knowledge in quantum mechanics, the relevant solid state physics background is provided as part of this self-contained text, which is complemented by end-of-chapter problems.

Topological Insulators and Topological Superconductors

Topological Insulators and Topological Superconductors
Author :
Publisher : Princeton University Press
Total Pages : 264
Release :
ISBN-10 : 9781400846733
ISBN-13 : 1400846730
Rating : 4/5 (33 Downloads)

Synopsis Topological Insulators and Topological Superconductors by : B. Andrei Bernevig

This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topological indices. The book also analyzes recent topics in condensed matter theory and concludes by surveying active subfields of research such as insulators with point-group symmetries and the stability of topological semimetals. Problems at the end of each chapter offer opportunities to test knowledge and engage with frontier research issues. Topological Insulators and Topological Superconductors will provide graduate students and researchers with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.

Topology in Condensed Matter

Topology in Condensed Matter
Author :
Publisher : Springer Science & Business Media
Total Pages : 263
Release :
ISBN-10 : 9783540312642
ISBN-13 : 3540312641
Rating : 4/5 (42 Downloads)

Synopsis Topology in Condensed Matter by : Michael I. Monastyrsky

This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.

Topological Insulators

Topological Insulators
Author :
Publisher : Springer Science & Business Media
Total Pages : 234
Release :
ISBN-10 : 9783642328589
ISBN-13 : 364232858X
Rating : 4/5 (89 Downloads)

Synopsis Topological Insulators by : Shun-Qing Shen

Topological insulators are insulating in the bulk, but process metallic states present around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, the first of its kind on topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological insulators and related areas. Shun-Qing Shen is a Professor at the Department of Physics, the University of Hong Kong, China.

Topological Phases of Matter

Topological Phases of Matter
Author :
Publisher : Cambridge University Press
Total Pages : 393
Release :
ISBN-10 : 9781107105539
ISBN-13 : 1107105536
Rating : 4/5 (39 Downloads)

Synopsis Topological Phases of Matter by : Roderich Moessner

This important graduate level text unites the physical mechanisms behind the phenomena of topological matter within a theoretical framework.

Lectures on Field Theory and Topology

Lectures on Field Theory and Topology
Author :
Publisher : American Mathematical Soc.
Total Pages : 202
Release :
ISBN-10 : 9781470452063
ISBN-13 : 1470452065
Rating : 4/5 (63 Downloads)

Synopsis Lectures on Field Theory and Topology by : Daniel S. Freed

These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.

Bulk and Boundary Invariants for Complex Topological Insulators

Bulk and Boundary Invariants for Complex Topological Insulators
Author :
Publisher : Springer
Total Pages : 217
Release :
ISBN-10 : 9783319293516
ISBN-13 : 3319293516
Rating : 4/5 (16 Downloads)

Synopsis Bulk and Boundary Invariants for Complex Topological Insulators by : Emil Prodan

This monograph offers an overview of rigorous results on fermionic topological insulators from the complex classes, namely, those without symmetries or with just a chiral symmetry. Particular focus is on the stability of the topological invariants in the presence of strong disorder, on the interplay between the bulk and boundary invariants and on their dependence on magnetic fields. The first part presents motivating examples and the conjectures put forward by the physics community, together with a brief review of the experimental achievements. The second part develops an operator algebraic approach for the study of disordered topological insulators. This leads naturally to the use of analytical tools from K-theory and non-commutative geometry, such as cyclic cohomology, quantized calculus with Fredholm modules and index pairings. New results include a generalized Streda formula and a proof of the delocalized nature of surface states in topological insulators with non-trivial invariants. The concluding chapter connects the invariants to measurable quantities and thus presents a refined physical characterization of the complex topological insulators. This book is intended for advanced students in mathematical physics and researchers alike.

Berry Phases in Electronic Structure Theory

Berry Phases in Electronic Structure Theory
Author :
Publisher : Cambridge University Press
Total Pages : 395
Release :
ISBN-10 : 9781107157651
ISBN-13 : 110715765X
Rating : 4/5 (51 Downloads)

Synopsis Berry Phases in Electronic Structure Theory by : David Vanderbilt

An introduction to the role of Berry phases in our modern understanding of the physics of electrons in solids.

Topological Quantum Computation

Topological Quantum Computation
Author :
Publisher : American Mathematical Soc.
Total Pages : 134
Release :
ISBN-10 : 9780821849309
ISBN-13 : 0821849301
Rating : 4/5 (09 Downloads)

Synopsis Topological Quantum Computation by : Zhenghan Wang

Topological quantum computation is a computational paradigm based on topological phases of matter, which are governed by topological quantum field theories. In this approach, information is stored in the lowest energy states of many-anyon systems and processed by braiding non-abelian anyons. The computational answer is accessed by bringing anyons together and observing the result. Besides its theoretical esthetic appeal, the practical merit of the topological approach lies in its error-minimizing hypothetical hardware: topological phases of matter are fault-avoiding or deaf to most local noises, and unitary gates are implemented with exponential accuracy. Experimental realizations are pursued in systems such as fractional quantum Hall liquids and topological insulators. This book expands on the author's CBMS lectures on knots and topological quantum computing and is intended as a primer for mathematically inclined graduate students. With an emphasis on introducing basic notions and current research, this book gives the first coherent account of the field, covering a wide range of topics: Temperley-Lieb-Jones theory, the quantum circuit model, ribbon fusion category theory, topological quantum field theory, anyon theory, additive approximation of the Jones polynomial, anyonic quantum computing models, and mathematical models of topological phases of matter.

Many-Body Quantum Theory in Condensed Matter Physics

Many-Body Quantum Theory in Condensed Matter Physics
Author :
Publisher : Oxford University Press
Total Pages : 458
Release :
ISBN-10 : 9780198566335
ISBN-13 : 0198566336
Rating : 4/5 (35 Downloads)

Synopsis Many-Body Quantum Theory in Condensed Matter Physics by : Henrik Bruus

The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.