Topological And Ergodic Theory Of Symbolic Dynamics
Download Topological And Ergodic Theory Of Symbolic Dynamics full books in PDF, epub, and Kindle. Read online free Topological And Ergodic Theory Of Symbolic Dynamics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Bruce P. Kitchens |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 263 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783642588228 |
ISBN-13 |
: 3642588220 |
Rating |
: 4/5 (28 Downloads) |
Synopsis Symbolic Dynamics by : Bruce P. Kitchens
Nearly one hundred years ago Jacques Hadamard used infinite sequences of symbols to analyze the distribution of geodesics on certain surfaces. That was the beginning of symbolic dynamics. In the 1930's and 40's Arnold Hedlund and Marston Morse again used infinite sequences to investigate geodesics on surfaces of negative curvature. They coined the term symbolic dynamics and began to study sequence spaces with the shift transformation as dynamical systems. In the 1940's Claude Shannon used sequence spaces to describe infor mation channels. Since that time symbolic dynamics has been used in ergodic theory, topological dynamics, hyperbolic dynamics, information theory and complex dynamics. Symbolic dynamical systems with a finite memory are stud ied in this book. They are the topological Markov shifts. Each can be defined by transition rules and the rules can be summarized by a transition matrix. The study naturally divides into two parts. The first part is about topological Markov shifts where the alphabet is finite. The second part is concerned with topological Markov shifts whose alphabet is count ably infinite. The techniques used in the two cases are quite different. When the alphabet is finite most of the methods are combinatorial or algebraic. When the alphabet is infinite the methods are much more analytic. This book grew from notes for a graduate course taught at Wesleyan Uni versity in the fall of 1994 and is intended as a graduate text and as a reference book for mathematicians working in related fields.
Author |
: Henk Bruin |
Publisher |
: American Mathematical Society |
Total Pages |
: 481 |
Release |
: 2023-01-20 |
ISBN-10 |
: 9781470469849 |
ISBN-13 |
: 1470469847 |
Rating |
: 4/5 (49 Downloads) |
Synopsis Topological and Ergodic Theory of Symbolic Dynamics by : Henk Bruin
Symbolic dynamics is essential in the study of dynamical systems of various types and is connected to many other fields such as stochastic processes, ergodic theory, representation of numbers, information and coding, etc. This graduate text introduces symbolic dynamics from a perspective of topological dynamical systems and presents a vast variety of important examples. After introducing symbolic and topological dynamics, the core of the book consists of discussions of various subshifts of positive entropy, of zero entropy, other non-shift minimal action on the Cantor set, and a study of the ergodic properties of these systems. The author presents recent developments such as spacing shifts, square-free shifts, density shifts, $mathcal{B}$-free shifts, Bratteli-Vershik systems, enumeration scales, amorphic complexity, and a modern and complete treatment of kneading theory. Later, he provides an overview of automata and linguistic complexity (Chomsky's hierarchy). The necessary background for the book varies, but for most of it a solid knowledge of real analysis and linear algebra and first courses in probability and measure theory, metric spaces, number theory, topology, and set theory suffice. Most of the exercises have solutions in the back of the book.
Author |
: Mariusz Urbański |
Publisher |
: Walter de Gruyter GmbH & Co KG |
Total Pages |
: 458 |
Release |
: 2021-11-22 |
ISBN-10 |
: 9783110702682 |
ISBN-13 |
: 3110702681 |
Rating |
: 4/5 (82 Downloads) |
Synopsis Ergodic Theory – Finite and Infinite, Thermodynamic Formalism, Symbolic Dynamics and Distance Expanding Maps by : Mariusz Urbański
The book contains a detailed treatment of thermodynamic formalism on general compact metrizable spaces. Topological pressure, topological entropy, variational principle, and equilibrium states are presented in detail. Abstract ergodic theory is also given a significant attention. Ergodic theorems, ergodicity, and Kolmogorov-Sinai metric entropy are fully explored. Furthermore, the book gives the reader an opportunity to find rigorous presentation of thermodynamic formalism for distance expanding maps and, in particular, subshifts of finite type over a finite alphabet. It also provides a fairly complete treatment of subshifts of finite type over a countable alphabet. Transfer operators, Gibbs states and equilibrium states are, in this context, introduced and dealt with. Their relations are explored. All of this is applied to fractal geometry centered around various versions of Bowen’s formula in the context of expanding conformal repellors, limit sets of conformal iterated function systems and conformal graph directed Markov systems. A unique introduction to iteration of rational functions is given with emphasize on various phenomena caused by rationally indifferent periodic points. Also, a fairly full account of the classicaltheory of Shub’s expanding endomorphisms is given; it does not have a book presentation in English language mathematical literature.
Author |
: Petr Kůrka |
Publisher |
: Société Mathématique de France |
Total Pages |
: 336 |
Release |
: 2003 |
ISBN-10 |
: STANFORD:36105113613520 |
ISBN-13 |
: |
Rating |
: 4/5 (20 Downloads) |
Synopsis Topological and Symbolic Dynamics by : Petr Kůrka
A dynamical system is a continuous self-map of a compact metric space. Topological dynamics studies the iterations of such a map, or equivalently, the trajectories of points of the state space. The basic concepts of topological dynamics are minimality, transitivity, recurrence, shadowing property, stability, equicontinuity, sensitivity, attractors, and topological entropy. Symbolic dynamics studies dynamical systems whose state spaces are zero-dimensional and consist of sequences of symbols. The main classes of symbolic dynamical systems are adding machines, subshifts of finite type, sofic subshifts, Sturmian, substitutive and Toeplitz subshifts, and cellular automata.
Author |
: M. Foreman |
Publisher |
: Cambridge University Press |
Total Pages |
: 304 |
Release |
: 2000-05-25 |
ISBN-10 |
: 0521786444 |
ISBN-13 |
: 9780521786447 |
Rating |
: 4/5 (44 Downloads) |
Synopsis Descriptive Set Theory and Dynamical Systems by : M. Foreman
In recent years there has been a growing interest in the interactions between descriptive set theory and various aspects of the theory of dynamical systems, including ergodic theory and topological dynamics. This volume, first published in 2000, contains a collection of survey papers by leading researchers covering a wide variety of recent developments in these subjects and their interconnections. This book provides researchers and graduate students interested in either of these areas with a guide to work done in the other, as well as with an introduction to problems and research directions arising from their interconnections.
Author |
: Harry Furstenberg |
Publisher |
: Princeton University Press |
Total Pages |
: 216 |
Release |
: 2014-07-14 |
ISBN-10 |
: 9781400855162 |
ISBN-13 |
: 1400855160 |
Rating |
: 4/5 (62 Downloads) |
Synopsis Recurrence in Ergodic Theory and Combinatorial Number Theory by : Harry Furstenberg
Topological dynamics and ergodic theory usually have been treated independently. H. Furstenberg, instead, develops the common ground between them by applying the modern theory of dynamical systems to combinatories and number theory. Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Author |
: Mark Pollicott |
Publisher |
: Cambridge University Press |
Total Pages |
: 198 |
Release |
: 1998-01-29 |
ISBN-10 |
: 0521575990 |
ISBN-13 |
: 9780521575997 |
Rating |
: 4/5 (90 Downloads) |
Synopsis Dynamical Systems and Ergodic Theory by : Mark Pollicott
This book is an essentially self contained introduction to topological dynamics and ergodic theory. It is divided into a number of relatively short chapters with the intention that each may be used as a component of a lecture course tailored to the particular audience. Parts of the book are suitable for a final year undergraduate course or for a masters level course. A number of applications are given, principally to number theory and arithmetic progressions (through van der waerden's theorem and szemerdi's theorem).
Author |
: Manfred Einsiedler |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 486 |
Release |
: 2010-09-11 |
ISBN-10 |
: 9780857290212 |
ISBN-13 |
: 0857290215 |
Rating |
: 4/5 (12 Downloads) |
Synopsis Ergodic Theory by : Manfred Einsiedler
This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. Ergodic Theory with a view towards Number Theory will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.
Author |
: Jane Hawkins |
Publisher |
: Springer Nature |
Total Pages |
: 340 |
Release |
: 2021-01-28 |
ISBN-10 |
: 9783030592424 |
ISBN-13 |
: 3030592421 |
Rating |
: 4/5 (24 Downloads) |
Synopsis Ergodic Dynamics by : Jane Hawkins
This textbook provides a broad introduction to the fields of dynamical systems and ergodic theory. Motivated by examples throughout, the author offers readers an approachable entry-point to the dynamics of ergodic systems. Modern and classical applications complement the theory on topics ranging from financial fraud to virus dynamics, offering numerous avenues for further inquiry. Starting with several simple examples of dynamical systems, the book begins by establishing the basics of measurable dynamical systems, attractors, and the ergodic theorems. From here, chapters are modular and can be selected according to interest. Highlights include the Perron–Frobenius theorem, which is presented with proof and applications that include Google PageRank. An in-depth exploration of invariant measures includes ratio sets and type III measurable dynamical systems using the von Neumann factor classification. Topological and measure theoretic entropy are illustrated and compared in detail, with an algorithmic application of entropy used to study the papillomavirus genome. A chapter on complex dynamics introduces Julia sets and proves their ergodicity for certain maps. Cellular automata are explored as a series of case studies in one and two dimensions, including Conway’s Game of Life and latent infections of HIV. Other chapters discuss mixing properties, shift spaces, and toral automorphisms. Ergodic Dynamics unifies topics across ergodic theory, topological dynamics, complex dynamics, and dynamical systems, offering an accessible introduction to the area. Readers across pure and applied mathematics will appreciate the rich illustration of the theory through examples, real-world connections, and vivid color graphics. A solid grounding in measure theory, topology, and complex analysis is assumed; appendices provide a brief review of the essentials from measure theory, functional analysis, and probability.
Author |
: Tomasz Downarowicz |
Publisher |
: Cambridge University Press |
Total Pages |
: 405 |
Release |
: 2011-05-12 |
ISBN-10 |
: 9781139500876 |
ISBN-13 |
: 1139500872 |
Rating |
: 4/5 (76 Downloads) |
Synopsis Entropy in Dynamical Systems by : Tomasz Downarowicz
This comprehensive text on entropy covers three major types of dynamics: measure preserving transformations; continuous maps on compact spaces; and operators on function spaces. Part I contains proofs of the Shannon–McMillan–Breiman Theorem, the Ornstein–Weiss Return Time Theorem, the Krieger Generator Theorem and, among the newest developments, the ergodic law of series. In Part II, after an expanded exposition of classical topological entropy, the book addresses symbolic extension entropy. It offers deep insight into the theory of entropy structure and explains the role of zero-dimensional dynamics as a bridge between measurable and topological dynamics. Part III explains how both measure-theoretic and topological entropy can be extended to operators on relevant function spaces. Intuitive explanations, examples, exercises and open problems make this an ideal text for a graduate course on entropy theory. More experienced researchers can also find inspiration for further research.