Topological and Symbolic Dynamics

Topological and Symbolic Dynamics
Author :
Publisher : Société Mathématique de France
Total Pages : 336
Release :
ISBN-10 : STANFORD:36105113613520
ISBN-13 :
Rating : 4/5 (20 Downloads)

Synopsis Topological and Symbolic Dynamics by : Petr Kůrka

A dynamical system is a continuous self-map of a compact metric space. Topological dynamics studies the iterations of such a map, or equivalently, the trajectories of points of the state space. The basic concepts of topological dynamics are minimality, transitivity, recurrence, shadowing property, stability, equicontinuity, sensitivity, attractors, and topological entropy. Symbolic dynamics studies dynamical systems whose state spaces are zero-dimensional and consist of sequences of symbols. The main classes of symbolic dynamical systems are adding machines, subshifts of finite type, sofic subshifts, Sturmian, substitutive and Toeplitz subshifts, and cellular automata.

Symbolic Dynamics

Symbolic Dynamics
Author :
Publisher : Springer Science & Business Media
Total Pages : 263
Release :
ISBN-10 : 9783642588228
ISBN-13 : 3642588220
Rating : 4/5 (28 Downloads)

Synopsis Symbolic Dynamics by : Bruce P. Kitchens

Nearly one hundred years ago Jacques Hadamard used infinite sequences of symbols to analyze the distribution of geodesics on certain surfaces. That was the beginning of symbolic dynamics. In the 1930's and 40's Arnold Hedlund and Marston Morse again used infinite sequences to investigate geodesics on surfaces of negative curvature. They coined the term symbolic dynamics and began to study sequence spaces with the shift transformation as dynamical systems. In the 1940's Claude Shannon used sequence spaces to describe infor mation channels. Since that time symbolic dynamics has been used in ergodic theory, topological dynamics, hyperbolic dynamics, information theory and complex dynamics. Symbolic dynamical systems with a finite memory are stud ied in this book. They are the topological Markov shifts. Each can be defined by transition rules and the rules can be summarized by a transition matrix. The study naturally divides into two parts. The first part is about topological Markov shifts where the alphabet is finite. The second part is concerned with topological Markov shifts whose alphabet is count ably infinite. The techniques used in the two cases are quite different. When the alphabet is finite most of the methods are combinatorial or algebraic. When the alphabet is infinite the methods are much more analytic. This book grew from notes for a graduate course taught at Wesleyan Uni versity in the fall of 1994 and is intended as a graduate text and as a reference book for mathematicians working in related fields.

Topological Dynamics

Topological Dynamics
Author :
Publisher : American Mathematical Soc.
Total Pages : 184
Release :
ISBN-10 : 0821874691
ISBN-13 : 9780821874691
Rating : 4/5 (91 Downloads)

Synopsis Topological Dynamics by : Walter Helbig Gottschalk

Topological dynamics is the study of transformation groups with respect to those topological properties whose prototype occurred in classical dynamics. In this volume, Part One contains the general theory. Part Two contains notable examples of flows which have contributed to the general theory of topological dynamics and which have in turn have been illuminated by the general theory of topological dynamics.

An Introduction to Symbolic Dynamics and Coding

An Introduction to Symbolic Dynamics and Coding
Author :
Publisher : Cambridge University Press
Total Pages : 572
Release :
ISBN-10 : 9781108901963
ISBN-13 : 1108901964
Rating : 4/5 (63 Downloads)

Synopsis An Introduction to Symbolic Dynamics and Coding by : Douglas Lind

Symbolic dynamics is a mature yet rapidly developing area of dynamical systems. It has established strong connections with many areas, including linear algebra, graph theory, probability, group theory, and the theory of computation, as well as data storage, statistical mechanics, and $C^*$-algebras. This Second Edition maintains the introductory character of the original 1995 edition as a general textbook on symbolic dynamics and its applications to coding. It is written at an elementary level and aimed at students, well-established researchers, and experts in mathematics, electrical engineering, and computer science. Topics are carefully developed and motivated with many illustrative examples. There are more than 500 exercises to test the reader's understanding. In addition to a chapter in the First Edition on advanced topics and a comprehensive bibliography, the Second Edition includes a detailed Addendum, with companion bibliography, describing major developments and new research directions since publication of the First Edition.

Topological Dynamical Systems

Topological Dynamical Systems
Author :
Publisher : Walter de Gruyter
Total Pages : 516
Release :
ISBN-10 : 9783110342406
ISBN-13 : 3110342405
Rating : 4/5 (06 Downloads)

Synopsis Topological Dynamical Systems by : Jan Vries

There is no recent elementary introduction to the theory of discrete dynamical systems that stresses the topological background of the topic. This book fills this gap: it deals with this theory as 'applied general topology'. We treat all important concepts needed to understand recent literature. The book is addressed primarily to graduate students. The prerequisites for understanding this book are modest: a certain mathematical maturity and course in General Topology are sufficient.

Profinite Semigroups and Symbolic Dynamics

Profinite Semigroups and Symbolic Dynamics
Author :
Publisher : Springer Nature
Total Pages : 283
Release :
ISBN-10 : 9783030552152
ISBN-13 : 3030552152
Rating : 4/5 (52 Downloads)

Synopsis Profinite Semigroups and Symbolic Dynamics by : Jorge Almeida

This book describes the relation between profinite semigroups and symbolic dynamics. Profinite semigroups are topological semigroups which are compact and residually finite. In particular, free profinite semigroups can be seen as the completion of free semigroups with respect to the profinite metric. In this metric, two words are close if one needs a morphism on a large finite monoid to distinguish them. The main focus is on a natural correspondence between minimal shift spaces (closed shift-invariant sets of two-sided infinite words) and maximal J-classes (certain subsets of free profinite semigroups). This correspondence sheds light on many aspects of both profinite semigroups and symbolic dynamics. For example, the return words to a given word in a shift space can be related to the generators of the group of the corresponding J-class. The book is aimed at researchers and graduate students in mathematics or theoretical computer science.

Applied Symbolic Dynamics And Chaos

Applied Symbolic Dynamics And Chaos
Author :
Publisher : World Scientific
Total Pages : 460
Release :
ISBN-10 : 9789814495974
ISBN-13 : 9814495972
Rating : 4/5 (74 Downloads)

Synopsis Applied Symbolic Dynamics And Chaos by : Bailin Hao

Latest Edition: Applied Symbolic Dynamics and Chaos (2nd Edition)Symbolic dynamics is a coarse-grained description of dynamics. It provides a rigorous way to understand the global systematics of periodic and chaotic motion in a system. In the last decade it has been applied to nonlinear systems described by one- and two-dimensional maps as well as by ordinary differential equations. This book will help practitioners in nonlinear science and engineering to master that powerful tool.

Ergodic Theory – Finite and Infinite, Thermodynamic Formalism, Symbolic Dynamics and Distance Expanding Maps

Ergodic Theory – Finite and Infinite, Thermodynamic Formalism, Symbolic Dynamics and Distance Expanding Maps
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 458
Release :
ISBN-10 : 9783110702682
ISBN-13 : 3110702681
Rating : 4/5 (82 Downloads)

Synopsis Ergodic Theory – Finite and Infinite, Thermodynamic Formalism, Symbolic Dynamics and Distance Expanding Maps by : Mariusz Urbański

The book contains a detailed treatment of thermodynamic formalism on general compact metrizable spaces. Topological pressure, topological entropy, variational principle, and equilibrium states are presented in detail. Abstract ergodic theory is also given a significant attention. Ergodic theorems, ergodicity, and Kolmogorov-Sinai metric entropy are fully explored. Furthermore, the book gives the reader an opportunity to find rigorous presentation of thermodynamic formalism for distance expanding maps and, in particular, subshifts of finite type over a finite alphabet. It also provides a fairly complete treatment of subshifts of finite type over a countable alphabet. Transfer operators, Gibbs states and equilibrium states are, in this context, introduced and dealt with. Their relations are explored. All of this is applied to fractal geometry centered around various versions of Bowen’s formula in the context of expanding conformal repellors, limit sets of conformal iterated function systems and conformal graph directed Markov systems. A unique introduction to iteration of rational functions is given with emphasize on various phenomena caused by rationally indifferent periodic points. Also, a fairly full account of the classicaltheory of Shub’s expanding endomorphisms is given; it does not have a book presentation in English language mathematical literature.

Elements of Topological Dynamics

Elements of Topological Dynamics
Author :
Publisher : Springer Science & Business Media
Total Pages : 762
Release :
ISBN-10 : 9789401581714
ISBN-13 : 9401581711
Rating : 4/5 (14 Downloads)

Synopsis Elements of Topological Dynamics by : J. de Vries

This book is designed as an introduction into what I call 'abstract' Topological Dynamics (TO): the study of topological transformation groups with respect to problems that can be traced back to the qualitative theory of differential equa is in the tradition of the books [GH] and [EW. The title tions. So this book (,Elements . . . ' rather than 'Introduction . . . ') does not mean that this book should be compared, either in scope or in (intended) impact, with the 'Ele ments' of Euclid or Bourbaki. Instead, it reflects the choice and organisation of the material in this book: elementary and basic (but sufficient to understand recent research papers in this field). There are still many challenging prob lems waiting for a solution, and especially among general topologists there is a growing interest in this direction. However, the technical inaccessability of many research papers makes it almost impossible for an outsider to under stand what is going on. To a large extent, this inaccessability is caused by the lack of a good and systematic exposition of the fundamental methods and techniques of abstract TO. This book is an attempt to fill this gap. The guiding principle for the organization of the material in this book has been the exposition of methods and techniques rather than a discussion of the leading problems and their solutions. though the latter are certainly not neglected: they are used as a motivation wherever possible.

Entropy in Dynamical Systems

Entropy in Dynamical Systems
Author :
Publisher : Cambridge University Press
Total Pages : 405
Release :
ISBN-10 : 9781139500876
ISBN-13 : 1139500872
Rating : 4/5 (76 Downloads)

Synopsis Entropy in Dynamical Systems by : Tomasz Downarowicz

This comprehensive text on entropy covers three major types of dynamics: measure preserving transformations; continuous maps on compact spaces; and operators on function spaces. Part I contains proofs of the Shannon–McMillan–Breiman Theorem, the Ornstein–Weiss Return Time Theorem, the Krieger Generator Theorem and, among the newest developments, the ergodic law of series. In Part II, after an expanded exposition of classical topological entropy, the book addresses symbolic extension entropy. It offers deep insight into the theory of entropy structure and explains the role of zero-dimensional dynamics as a bridge between measurable and topological dynamics. Part III explains how both measure-theoretic and topological entropy can be extended to operators on relevant function spaces. Intuitive explanations, examples, exercises and open problems make this an ideal text for a graduate course on entropy theory. More experienced researchers can also find inspiration for further research.