Thoughtful Machine Learning With Python
Download Thoughtful Machine Learning With Python full books in PDF, epub, and Kindle. Read online free Thoughtful Machine Learning With Python ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Matthew Kirk |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 220 |
Release |
: 2017-01-16 |
ISBN-10 |
: 9781491924105 |
ISBN-13 |
: 1491924101 |
Rating |
: 4/5 (05 Downloads) |
Synopsis Thoughtful Machine Learning with Python by : Matthew Kirk
Gain the confidence you need to apply machine learning in your daily work. With this practical guide, author Matthew Kirk shows you how to integrate and test machine learning algorithms in your code, without the academic subtext. Featuring graphs and highlighted code examples throughout, the book features tests with Python’s Numpy, Pandas, Scikit-Learn, and SciPy data science libraries. If you’re a software engineer or business analyst interested in data science, this book will help you: Reference real-world examples to test each algorithm through engaging, hands-on exercises Apply test-driven development (TDD) to write and run tests before you start coding Explore techniques for improving your machine-learning models with data extraction and feature development Watch out for the risks of machine learning, such as underfitting or overfitting data Work with K-Nearest Neighbors, neural networks, clustering, and other algorithms
Author |
: Matthew Kirk |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 253 |
Release |
: 2014-09-26 |
ISBN-10 |
: 9781449374099 |
ISBN-13 |
: 1449374093 |
Rating |
: 4/5 (99 Downloads) |
Synopsis Thoughtful Machine Learning by : Matthew Kirk
Learn how to apply test-driven development (TDD) to machine-learning algorithms—and catch mistakes that could sink your analysis. In this practical guide, author Matthew Kirk takes you through the principles of TDD and machine learning, and shows you how to apply TDD to several machine-learning algorithms, including Naive Bayesian classifiers and Neural Networks. Machine-learning algorithms often have tests baked in, but they can’t account for human errors in coding. Rather than blindly rely on machine-learning results as many researchers have, you can mitigate the risk of errors with TDD and write clean, stable machine-learning code. If you’re familiar with Ruby 2.1, you’re ready to start. Apply TDD to write and run tests before you start coding Learn the best uses and tradeoffs of eight machine learning algorithms Use real-world examples to test each algorithm through engaging, hands-on exercises Understand the similarities between TDD and the scientific method for validating solutions Be aware of the risks of machine learning, such as underfitting and overfitting data Explore techniques for improving your machine-learning models or data extraction
Author |
: Chris Albon |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 285 |
Release |
: 2018-03-09 |
ISBN-10 |
: 9781491989333 |
ISBN-13 |
: 1491989335 |
Rating |
: 4/5 (33 Downloads) |
Synopsis Machine Learning with Python Cookbook by : Chris Albon
This practical guide provides nearly 200 self-contained recipes to help you solve machine learning challenges you may encounter in your daily work. If you’re comfortable with Python and its libraries, including pandas and scikit-learn, you’ll be able to address specific problems such as loading data, handling text or numerical data, model selection, and dimensionality reduction and many other topics. Each recipe includes code that you can copy and paste into a toy dataset to ensure that it actually works. From there, you can insert, combine, or adapt the code to help construct your application. Recipes also include a discussion that explains the solution and provides meaningful context. This cookbook takes you beyond theory and concepts by providing the nuts and bolts you need to construct working machine learning applications. You’ll find recipes for: Vectors, matrices, and arrays Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Support vector machines (SVM), naïve Bayes, clustering, and neural networks Saving and loading trained models
Author |
: Leonard Deep |
Publisher |
: |
Total Pages |
: 236 |
Release |
: 2019-05-13 |
ISBN-10 |
: 1097858308 |
ISBN-13 |
: 9781097858309 |
Rating |
: 4/5 (08 Downloads) |
Synopsis Python Machine Learning for Beginners by : Leonard Deep
Are you interested to get into the programming world? Do you want to learn and understand Python and Machine Learning? Python Machine Learning for Beginners is the guide for you. Python Machine Learning for Beginners is the ultimate guide for beginners looking to learn and understand how Python programming works. Python Machine Learning for Beginners is split up into easy to learn chapters that will help guide the readers through the early stages of Python programming. It's this thought out and systematic approach to learning which makes Python Machine Learning for Beginners such a sought-after resource for those that want to learn about Python programming and about Machine Learning using an object-oriented programming approach. Inside Python Machine Learning for Beginners you will discover: An introduction to Machine Learning The main concepts of Machine Learning The basics of Python for beginners Machine Learning with Python Data Processing, Analysis, and Visualizations Case studies and much more! Throughout the book, you will learn the basic concepts behind Python programming which is designed to introduce you to Python programming. You will learn about getting started, the keywords and statements, data types and type conversion. Along with different examples, there are also exercises to help ensure that the information sinks in. You will find this book an invaluable tool for starting and mastering Machine Learning using Python. Once you complete Python Machine Learning for Beginners, you will be more than prepared to take on any Python programming. Scroll back up to the top of this page and hit BUY IT NOW to get your copy of Python Machine Learning for Beginners! You won't regret it!
Author |
: Michael Kanaan |
Publisher |
: BenBella Books |
Total Pages |
: 249 |
Release |
: 2020-08-25 |
ISBN-10 |
: 9781950665136 |
ISBN-13 |
: 1950665135 |
Rating |
: 4/5 (36 Downloads) |
Synopsis T-Minus AI by : Michael Kanaan
Late in 2017, the global significance of the conversation about artificial intelligence (AI) changed forever. China put the world on alert when it released a plan to dominate all aspects of AI across the planet. Only weeks later, Vladimir Putin raised a Russian red flag in response by declaring AI the future for all humankind, and proclaiming that, "Whoever becomes the leader in this sphere will become the ruler of the world." The race was on. Consistent with their unique national agendas, countries throughout the world began plotting their paths and hurrying their pace. Now, not long after, the race has become a sprint. Despite everything at stake, to most of us AI remains shrouded by a cloud of mystery and misunderstanding. Hidden behind complicated and technical jargon and confused by fantastical depictions of science fiction, the modern realities of AI and its profound implications are hard to decipher, but crucial to recognize. In T-Minus AI: Humanity's Countdown to Artificial Intelligence and the New Pursuit of Global Power, author Michael Kanaan explains AI from a human-oriented perspective we can all finally understand. A recognized national expert and the U.S. Air Force's first Chairperson for Artificial Intelligence, Kanaan weaves a compelling new view on our history of innovation and technology to masterfully explain what each of us should know about modern computing, AI, and machine learning. Kanaan also dives into the global implications of AI by illuminating the cultural and national vulnerabilities already exposed and the pressing issues now squarely on the table. AI has already become China's all-purpose tool to impose its authoritarian influence around the world. Russia, playing catch up, is weaponizing AI through its military systems and now infamous, aggressive efforts to disrupt democracy by whatever disinformation means possible. America and like-minded nations are awakening to these new realities—and the paths they're electing to follow echo loudly the political foundations and, in most cases, the moral imperatives upon which they were formed. As we march toward a future far different than ever imagined, T-Minus AI is fascinating and crucially well-timed. It leaves the fiction behind, paints the alarming implications of AI for what they actually are, and calls for unified action to protect fundamental human rights and dignities for all.
Author |
: Jason Bell |
Publisher |
: John Wiley & Sons |
Total Pages |
: 497 |
Release |
: 2020-02-17 |
ISBN-10 |
: 9781119642190 |
ISBN-13 |
: 1119642191 |
Rating |
: 4/5 (90 Downloads) |
Synopsis Machine Learning by : Jason Bell
Dig deep into the data with a hands-on guide to machine learning with updated examples and more! Machine Learning: Hands-On for Developers and Technical Professionals provides hands-on instruction and fully-coded working examples for the most common machine learning techniques used by developers and technical professionals. The book contains a breakdown of each ML variant, explaining how it works and how it is used within certain industries, allowing readers to incorporate the presented techniques into their own work as they follow along. A core tenant of machine learning is a strong focus on data preparation, and a full exploration of the various types of learning algorithms illustrates how the proper tools can help any developer extract information and insights from existing data. The book includes a full complement of Instructor's Materials to facilitate use in the classroom, making this resource useful for students and as a professional reference. At its core, machine learning is a mathematical, algorithm-based technology that forms the basis of historical data mining and modern big data science. Scientific analysis of big data requires a working knowledge of machine learning, which forms predictions based on known properties learned from training data. Machine Learning is an accessible, comprehensive guide for the non-mathematician, providing clear guidance that allows readers to: Learn the languages of machine learning including Hadoop, Mahout, and Weka Understand decision trees, Bayesian networks, and artificial neural networks Implement Association Rule, Real Time, and Batch learning Develop a strategic plan for safe, effective, and efficient machine learning By learning to construct a system that can learn from data, readers can increase their utility across industries. Machine learning sits at the core of deep dive data analysis and visualization, which is increasingly in demand as companies discover the goldmine hiding in their existing data. For the tech professional involved in data science, Machine Learning: Hands-On for Developers and Technical Professionals provides the skills and techniques required to dig deeper.
Author |
: Davy Cielen |
Publisher |
: Simon and Schuster |
Total Pages |
: 475 |
Release |
: 2016-05-02 |
ISBN-10 |
: 9781638352495 |
ISBN-13 |
: 1638352496 |
Rating |
: 4/5 (95 Downloads) |
Synopsis Introducing Data Science by : Davy Cielen
Summary Introducing Data Science teaches you how to accomplish the fundamental tasks that occupy data scientists. Using the Python language and common Python libraries, you'll experience firsthand the challenges of dealing with data at scale and gain a solid foundation in data science. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Many companies need developers with data science skills to work on projects ranging from social media marketing to machine learning. Discovering what you need to learn to begin a career as a data scientist can seem bewildering. This book is designed to help you get started. About the Book Introducing Data ScienceIntroducing Data Science explains vital data science concepts and teaches you how to accomplish the fundamental tasks that occupy data scientists. You’ll explore data visualization, graph databases, the use of NoSQL, and the data science process. You’ll use the Python language and common Python libraries as you experience firsthand the challenges of dealing with data at scale. Discover how Python allows you to gain insights from data sets so big that they need to be stored on multiple machines, or from data moving so quickly that no single machine can handle it. This book gives you hands-on experience with the most popular Python data science libraries, Scikit-learn and StatsModels. After reading this book, you’ll have the solid foundation you need to start a career in data science. What’s Inside Handling large data Introduction to machine learning Using Python to work with data Writing data science algorithms About the Reader This book assumes you're comfortable reading code in Python or a similar language, such as C, Ruby, or JavaScript. No prior experience with data science is required. About the Authors Davy Cielen, Arno D. B. Meysman, and Mohamed Ali are the founders and managing partners of Optimately and Maiton, where they focus on developing data science projects and solutions in various sectors. Table of Contents Data science in a big data world The data science process Machine learning Handling large data on a single computer First steps in big data Join the NoSQL movement The rise of graph databases Text mining and text analytics Data visualization to the end user
Author |
: Willi Richert |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 431 |
Release |
: 2013-01-01 |
ISBN-10 |
: 9781782161417 |
ISBN-13 |
: 1782161414 |
Rating |
: 4/5 (17 Downloads) |
Synopsis Building Machine Learning Systems with Python by : Willi Richert
This is a tutorial-driven and practical, but well-grounded book showcasing good Machine Learning practices. There will be an emphasis on using existing technologies instead of showing how to write your own implementations of algorithms. This book is a scenario-based, example-driven tutorial. By the end of the book you will have learnt critical aspects of Machine Learning Python projects and experienced the power of ML-based systems by actually working on them.This book primarily targets Python developers who want to learn about and build Machine Learning into their projects, or who want to pro.
Author |
: Matt Harrison |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 230 |
Release |
: 2019-08-27 |
ISBN-10 |
: 9781492047490 |
ISBN-13 |
: 149204749X |
Rating |
: 4/5 (90 Downloads) |
Synopsis Machine Learning Pocket Reference by : Matt Harrison
With detailed notes, tables, and examples, this handy reference will help you navigate the basics of structured machine learning. Author Matt Harrison delivers a valuable guide that you can use for additional support during training and as a convenient resource when you dive into your next machine learning project. Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data. You’ll also learn methods for clustering, predicting a continuous value (regression), and reducing dimensionality, among other topics. This pocket reference includes sections that cover: Classification, using the Titanic dataset Cleaning data and dealing with missing data Exploratory data analysis Common preprocessing steps using sample data Selecting features useful to the model Model selection Metrics and classification evaluation Regression examples using k-nearest neighbor, decision trees, boosting, and more Metrics for regression evaluation Clustering Dimensionality reduction Scikit-learn pipelines
Author |
: Jeremy Howard |
Publisher |
: O'Reilly Media |
Total Pages |
: 624 |
Release |
: 2020-06-29 |
ISBN-10 |
: 9781492045496 |
ISBN-13 |
: 1492045497 |
Rating |
: 4/5 (96 Downloads) |
Synopsis Deep Learning for Coders with fastai and PyTorch by : Jeremy Howard
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala