Introducing Data Science
Download Introducing Data Science full books in PDF, epub, and Kindle. Read online free Introducing Data Science ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Davy Cielen |
Publisher |
: Simon and Schuster |
Total Pages |
: 475 |
Release |
: 2016-05-02 |
ISBN-10 |
: 9781638352495 |
ISBN-13 |
: 1638352496 |
Rating |
: 4/5 (95 Downloads) |
Synopsis Introducing Data Science by : Davy Cielen
Summary Introducing Data Science teaches you how to accomplish the fundamental tasks that occupy data scientists. Using the Python language and common Python libraries, you'll experience firsthand the challenges of dealing with data at scale and gain a solid foundation in data science. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Many companies need developers with data science skills to work on projects ranging from social media marketing to machine learning. Discovering what you need to learn to begin a career as a data scientist can seem bewildering. This book is designed to help you get started. About the Book Introducing Data ScienceIntroducing Data Science explains vital data science concepts and teaches you how to accomplish the fundamental tasks that occupy data scientists. You’ll explore data visualization, graph databases, the use of NoSQL, and the data science process. You’ll use the Python language and common Python libraries as you experience firsthand the challenges of dealing with data at scale. Discover how Python allows you to gain insights from data sets so big that they need to be stored on multiple machines, or from data moving so quickly that no single machine can handle it. This book gives you hands-on experience with the most popular Python data science libraries, Scikit-learn and StatsModels. After reading this book, you’ll have the solid foundation you need to start a career in data science. What’s Inside Handling large data Introduction to machine learning Using Python to work with data Writing data science algorithms About the Reader This book assumes you're comfortable reading code in Python or a similar language, such as C, Ruby, or JavaScript. No prior experience with data science is required. About the Authors Davy Cielen, Arno D. B. Meysman, and Mohamed Ali are the founders and managing partners of Optimately and Maiton, where they focus on developing data science projects and solutions in various sectors. Table of Contents Data science in a big data world The data science process Machine learning Handling large data on a single computer First steps in big data Join the NoSQL movement The rise of graph databases Text mining and text analytics Data visualization to the end user
Author |
: Rafael A. Irizarry |
Publisher |
: CRC Press |
Total Pages |
: 836 |
Release |
: 2019-11-20 |
ISBN-10 |
: 9781000708035 |
ISBN-13 |
: 1000708039 |
Rating |
: 4/5 (35 Downloads) |
Synopsis Introduction to Data Science by : Rafael A. Irizarry
Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.
Author |
: Chirag Shah |
Publisher |
: Cambridge University Press |
Total Pages |
: 459 |
Release |
: 2020-04-02 |
ISBN-10 |
: 9781108472449 |
ISBN-13 |
: 1108472443 |
Rating |
: 4/5 (49 Downloads) |
Synopsis A Hands-On Introduction to Data Science by : Chirag Shah
An introductory textbook offering a low barrier entry to data science; the hands-on approach will appeal to students from a range of disciplines.
Author |
: Laura Igual |
Publisher |
: Springer |
Total Pages |
: 227 |
Release |
: 2017-02-22 |
ISBN-10 |
: 9783319500171 |
ISBN-13 |
: 3319500171 |
Rating |
: 4/5 (71 Downloads) |
Synopsis Introduction to Data Science by : Laura Igual
This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website.
Author |
: Jeffrey S. Saltz |
Publisher |
: SAGE Publications |
Total Pages |
: 289 |
Release |
: 2017-08-25 |
ISBN-10 |
: 9781506377544 |
ISBN-13 |
: 1506377548 |
Rating |
: 4/5 (44 Downloads) |
Synopsis An Introduction to Data Science by : Jeffrey S. Saltz
An Introduction to Data Science is an easy-to-read data science textbook for those with no prior coding knowledge. It features exercises at the end of each chapter, author-generated tables and visualizations, and R code examples throughout.
Author |
: Hadley Wickham |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 521 |
Release |
: 2016-12-12 |
ISBN-10 |
: 9781491910368 |
ISBN-13 |
: 1491910364 |
Rating |
: 4/5 (68 Downloads) |
Synopsis R for Data Science by : Hadley Wickham
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Author |
: Tiffany Timbers |
Publisher |
: CRC Press |
Total Pages |
: 466 |
Release |
: 2022-07-15 |
ISBN-10 |
: 9781000579642 |
ISBN-13 |
: 1000579646 |
Rating |
: 4/5 (42 Downloads) |
Synopsis Data Science by : Tiffany Timbers
Data Science: A First Introduction focuses on using the R programming language in Jupyter notebooks to perform data manipulation and cleaning, create effective visualizations, and extract insights from data using classification, regression, clustering, and inference. The text emphasizes workflows that are clear, reproducible, and shareable, and includes coverage of the basics of version control. All source code is available online, demonstrating the use of good reproducible project workflows. Based on educational research and active learning principles, the book uses a modern approach to R and includes accompanying autograded Jupyter worksheets for interactive, self-directed learning. The book will leave readers well-prepared for data science projects. The book is designed for learners from all disciplines with minimal prior knowledge of mathematics and programming. The authors have honed the material through years of experience teaching thousands of undergraduates in the University of British Columbia’s DSCI100: Introduction to Data Science course.
Author |
: Ryan A. Estrellado |
Publisher |
: Routledge |
Total Pages |
: 331 |
Release |
: 2020-10-26 |
ISBN-10 |
: 9781000200904 |
ISBN-13 |
: 1000200906 |
Rating |
: 4/5 (04 Downloads) |
Synopsis Data Science in Education Using R by : Ryan A. Estrellado
Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a "learn by doing" approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development.
Author |
: Cecilia Aragon |
Publisher |
: MIT Press |
Total Pages |
: 201 |
Release |
: 2022-03-01 |
ISBN-10 |
: 9780262367592 |
ISBN-13 |
: 0262367599 |
Rating |
: 4/5 (92 Downloads) |
Synopsis Human-Centered Data Science by : Cecilia Aragon
Best practices for addressing the bias and inequality that may result from the automated collection, analysis, and distribution of large datasets. Human-centered data science is a new interdisciplinary field that draws from human-computer interaction, social science, statistics, and computational techniques. This book, written by founders of the field, introduces best practices for addressing the bias and inequality that may result from the automated collection, analysis, and distribution of very large datasets. It offers a brief and accessible overview of many common statistical and algorithmic data science techniques, explains human-centered approaches to data science problems, and presents practical guidelines and real-world case studies to help readers apply these methods. The authors explain how data scientists’ choices are involved at every stage of the data science workflow—and show how a human-centered approach can enhance each one, by making the process more transparent, asking questions, and considering the social context of the data. They describe how tools from social science might be incorporated into data science practices, discuss different types of collaboration, and consider data storytelling through visualization. The book shows that data science practitioners can build rigorous and ethical algorithms and design projects that use cutting-edge computational tools and address social concerns.
Author |
: Erick Thompson |
Publisher |
: |
Total Pages |
: 266 |
Release |
: 2020-10-30 |
ISBN-10 |
: 1801547998 |
ISBN-13 |
: 9781801547994 |
Rating |
: 4/5 (98 Downloads) |
Synopsis Python for Data Science by : Erick Thompson