A Hands On Introduction To Data Science
Download A Hands On Introduction To Data Science full books in PDF, epub, and Kindle. Read online free A Hands On Introduction To Data Science ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Chirag Shah |
Publisher |
: Cambridge University Press |
Total Pages |
: 459 |
Release |
: 2020-04-02 |
ISBN-10 |
: 9781108472449 |
ISBN-13 |
: 1108472443 |
Rating |
: 4/5 (49 Downloads) |
Synopsis A Hands-On Introduction to Data Science by : Chirag Shah
An introductory textbook offering a low barrier entry to data science; the hands-on approach will appeal to students from a range of disciplines.
Author |
: Frank Kane |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 415 |
Release |
: 2017-07-31 |
ISBN-10 |
: 9781787280229 |
ISBN-13 |
: 1787280225 |
Rating |
: 4/5 (29 Downloads) |
Synopsis Hands-On Data Science and Python Machine Learning by : Frank Kane
This book covers the fundamentals of machine learning with Python in a concise and dynamic manner. It covers data mining and large-scale machine learning using Apache Spark. About This Book Take your first steps in the world of data science by understanding the tools and techniques of data analysis Train efficient Machine Learning models in Python using the supervised and unsupervised learning methods Learn how to use Apache Spark for processing Big Data efficiently Who This Book Is For If you are a budding data scientist or a data analyst who wants to analyze and gain actionable insights from data using Python, this book is for you. Programmers with some experience in Python who want to enter the lucrative world of Data Science will also find this book to be very useful, but you don't need to be an expert Python coder or mathematician to get the most from this book. What You Will Learn Learn how to clean your data and ready it for analysis Implement the popular clustering and regression methods in Python Train efficient machine learning models using decision trees and random forests Visualize the results of your analysis using Python's Matplotlib library Use Apache Spark's MLlib package to perform machine learning on large datasets In Detail Join Frank Kane, who worked on Amazon and IMDb's machine learning algorithms, as he guides you on your first steps into the world of data science. Hands-On Data Science and Python Machine Learning gives you the tools that you need to understand and explore the core topics in the field, and the confidence and practice to build and analyze your own machine learning models. With the help of interesting and easy-to-follow practical examples, Frank Kane explains potentially complex topics such as Bayesian methods and K-means clustering in a way that anybody can understand them. Based on Frank's successful data science course, Hands-On Data Science and Python Machine Learning empowers you to conduct data analysis and perform efficient machine learning using Python. Let Frank help you unearth the value in your data using the various data mining and data analysis techniques available in Python, and to develop efficient predictive models to predict future results. You will also learn how to perform large-scale machine learning on Big Data using Apache Spark. The book covers preparing your data for analysis, training machine learning models, and visualizing the final data analysis. Style and approach This comprehensive book is a perfect blend of theory and hands-on code examples in Python which can be used for your reference at any time.
Author |
: Laura Igual |
Publisher |
: Springer |
Total Pages |
: 227 |
Release |
: 2017-02-22 |
ISBN-10 |
: 9783319500171 |
ISBN-13 |
: 3319500171 |
Rating |
: 4/5 (71 Downloads) |
Synopsis Introduction to Data Science by : Laura Igual
This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website.
Author |
: Rafael A. Irizarry |
Publisher |
: CRC Press |
Total Pages |
: 836 |
Release |
: 2019-11-20 |
ISBN-10 |
: 9781000708035 |
ISBN-13 |
: 1000708039 |
Rating |
: 4/5 (35 Downloads) |
Synopsis Introduction to Data Science by : Rafael A. Irizarry
Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.
Author |
: Hadley Wickham |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 521 |
Release |
: 2016-12-12 |
ISBN-10 |
: 9781491910368 |
ISBN-13 |
: 1491910364 |
Rating |
: 4/5 (68 Downloads) |
Synopsis R for Data Science by : Hadley Wickham
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Author |
: Steven S. Skiena |
Publisher |
: Springer |
Total Pages |
: 456 |
Release |
: 2017-07-01 |
ISBN-10 |
: 9783319554440 |
ISBN-13 |
: 3319554441 |
Rating |
: 4/5 (40 Downloads) |
Synopsis The Data Science Design Manual by : Steven S. Skiena
This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an “Introduction to Data Science” course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well. Additional learning tools: Contains “War Stories,” offering perspectives on how data science applies in the real world Includes “Homework Problems,” providing a wide range of exercises and projects for self-study Provides a complete set of lecture slides and online video lectures at www.data-manual.com Provides “Take-Home Lessons,” emphasizing the big-picture concepts to learn from each chapter Recommends exciting “Kaggle Challenges” from the online platform Kaggle Highlights “False Starts,” revealing the subtle reasons why certain approaches fail Offers examples taken from the data science television show “The Quant Shop” (www.quant-shop.com)
Author |
: Computer Programming Academy |
Publisher |
: |
Total Pages |
: 202 |
Release |
: 2020-11-10 |
ISBN-10 |
: 1914185102 |
ISBN-13 |
: 9781914185106 |
Rating |
: 4/5 (02 Downloads) |
Synopsis Python Data Science by : Computer Programming Academy
Inside this book you will find all the basic notions to start with Python and all the programming concepts to implement predictive analytics. With our proven strategies you will write efficient Python codes in less than a week!
Author |
: Joel Grus |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 336 |
Release |
: 2015-04-14 |
ISBN-10 |
: 9781491904398 |
ISBN-13 |
: 1491904399 |
Rating |
: 4/5 (98 Downloads) |
Synopsis Data Science from Scratch by : Joel Grus
Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases
Author |
: Tiffany Timbers |
Publisher |
: CRC Press |
Total Pages |
: 466 |
Release |
: 2022-07-15 |
ISBN-10 |
: 9781000579642 |
ISBN-13 |
: 1000579646 |
Rating |
: 4/5 (42 Downloads) |
Synopsis Data Science by : Tiffany Timbers
Data Science: A First Introduction focuses on using the R programming language in Jupyter notebooks to perform data manipulation and cleaning, create effective visualizations, and extract insights from data using classification, regression, clustering, and inference. The text emphasizes workflows that are clear, reproducible, and shareable, and includes coverage of the basics of version control. All source code is available online, demonstrating the use of good reproducible project workflows. Based on educational research and active learning principles, the book uses a modern approach to R and includes accompanying autograded Jupyter worksheets for interactive, self-directed learning. The book will leave readers well-prepared for data science projects. The book is designed for learners from all disciplines with minimal prior knowledge of mathematics and programming. The authors have honed the material through years of experience teaching thousands of undergraduates in the University of British Columbia’s DSCI100: Introduction to Data Science course.
Author |
: Yuli Vasiliev |
Publisher |
: No Starch Press |
Total Pages |
: 271 |
Release |
: 2022-08-02 |
ISBN-10 |
: 9781718502215 |
ISBN-13 |
: 1718502214 |
Rating |
: 4/5 (15 Downloads) |
Synopsis Python for Data Science by : Yuli Vasiliev
A hands-on, real-world introduction to data analysis with the Python programming language, loaded with wide-ranging examples. Python is an ideal choice for accessing, manipulating, and gaining insights from data of all kinds. Python for Data Science introduces you to the Pythonic world of data analysis with a learn-by-doing approach rooted in practical examples and hands-on activities. You’ll learn how to write Python code to obtain, transform, and analyze data, practicing state-of-the-art data processing techniques for use cases in business management, marketing, and decision support. You will discover Python’s rich set of built-in data structures for basic operations, as well as its robust ecosystem of open-source libraries for data science, including NumPy, pandas, scikit-learn, matplotlib, and more. Examples show how to load data in various formats, how to streamline, group, and aggregate data sets, and how to create charts, maps, and other visualizations. Later chapters go in-depth with demonstrations of real-world data applications, including using location data to power a taxi service, market basket analysis to identify items commonly purchased together, and machine learning to predict stock prices.