Theory Of Evolutionary Computation
Download Theory Of Evolutionary Computation full books in PDF, epub, and Kindle. Read online free Theory Of Evolutionary Computation ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Benjamin Doerr |
Publisher |
: Springer Nature |
Total Pages |
: 527 |
Release |
: 2019-11-20 |
ISBN-10 |
: 9783030294144 |
ISBN-13 |
: 3030294145 |
Rating |
: 4/5 (44 Downloads) |
Synopsis Theory of Evolutionary Computation by : Benjamin Doerr
This edited book reports on recent developments in the theory of evolutionary computation, or more generally the domain of randomized search heuristics. It starts with two chapters on mathematical methods that are often used in the analysis of randomized search heuristics, followed by three chapters on how to measure the complexity of a search heuristic: black-box complexity, a counterpart of classical complexity theory in black-box optimization; parameterized complexity, aimed at a more fine-grained view of the difficulty of problems; and the fixed-budget perspective, which answers the question of how good a solution will be after investing a certain computational budget. The book then describes theoretical results on three important questions in evolutionary computation: how to profit from changing the parameters during the run of an algorithm; how evolutionary algorithms cope with dynamically changing or stochastic environments; and how population diversity influences performance. Finally, the book looks at three algorithm classes that have only recently become the focus of theoretical work: estimation-of-distribution algorithms; artificial immune systems; and genetic programming. Throughout the book the contributing authors try to develop an understanding for how these methods work, and why they are so successful in many applications. The book will be useful for students and researchers in theoretical computer science and evolutionary computing.
Author |
: Ashish Ghosh |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 1001 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783642189654 |
ISBN-13 |
: 3642189652 |
Rating |
: 4/5 (54 Downloads) |
Synopsis Advances in Evolutionary Computing by : Ashish Ghosh
This book provides a collection of fourty articles containing new material on both theoretical aspects of Evolutionary Computing (EC), and demonstrating the usefulness/success of it for various kinds of large-scale real world problems. Around 23 articles deal with various theoretical aspects of EC and 17 articles demonstrate the success of EC methodologies. These articles are written by leading experts of the field from different countries all over the world.
Author |
: Leila Kallel |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 516 |
Release |
: 2001-05-08 |
ISBN-10 |
: 3540673962 |
ISBN-13 |
: 9783540673965 |
Rating |
: 4/5 (62 Downloads) |
Synopsis Theoretical Aspects of Evolutionary Computing by : Leila Kallel
This book is the first in the field to provide extensive, entry level tutorials to the theory of Evolutionary Computing, covering the main approaches to understanding the dynamics of Evolutionary Algorithms. It combines this with recent, previously unpublished research papers based on the material of the tutorials. The outcome is a book which is self-contained to a large degree, attractive both to graduate students and researchers from other fields who want to get acquainted with the theory of Evolutionary Computing, and to active researchers in the field who can use this book as a reference and a source of recent results.
Author |
: A.E. Eiben |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 328 |
Release |
: 2007-08-06 |
ISBN-10 |
: 3540401849 |
ISBN-13 |
: 9783540401841 |
Rating |
: 4/5 (49 Downloads) |
Synopsis Introduction to Evolutionary Computing by : A.E. Eiben
The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.
Author |
: Kenneth A. De Jong |
Publisher |
: MIT Press |
Total Pages |
: 267 |
Release |
: 2006-02-03 |
ISBN-10 |
: 9780262041942 |
ISBN-13 |
: 0262041944 |
Rating |
: 4/5 (42 Downloads) |
Synopsis Evolutionary Computation by : Kenneth A. De Jong
This text is an introduction to the field of evolutionary computation. It approaches evolution strategies and genetic programming, as instances of a more general class of evolutionary algorithms.
Author |
: Dan Simon |
Publisher |
: John Wiley & Sons |
Total Pages |
: 776 |
Release |
: 2013-06-13 |
ISBN-10 |
: 9781118659502 |
ISBN-13 |
: 1118659503 |
Rating |
: 4/5 (02 Downloads) |
Synopsis Evolutionary Optimization Algorithms by : Dan Simon
A clear and lucid bottom-up approach to the basic principles of evolutionary algorithms Evolutionary algorithms (EAs) are a type of artificial intelligence. EAs are motivated by optimization processes that we observe in nature, such as natural selection, species migration, bird swarms, human culture, and ant colonies. This book discusses the theory, history, mathematics, and programming of evolutionary optimization algorithms. Featured algorithms include genetic algorithms, genetic programming, ant colony optimization, particle swarm optimization, differential evolution, biogeography-based optimization, and many others. Evolutionary Optimization Algorithms: Provides a straightforward, bottom-up approach that assists the reader in obtaining a clear but theoretically rigorous understanding of evolutionary algorithms, with an emphasis on implementation Gives a careful treatment of recently developed EAs including opposition-based learning, artificial fish swarms, bacterial foraging, and many others and discusses their similarities and differences from more well-established EAs Includes chapter-end problems plus a solutions manual available online for instructors Offers simple examples that provide the reader with an intuitive understanding of the theory Features source code for the examples available on the author's website Provides advanced mathematical techniques for analyzing EAs, including Markov modeling and dynamic system modeling Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence is an ideal text for advanced undergraduate students, graduate students, and professionals involved in engineering and computer science.
Author |
: Hans-Georg Beyer |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 393 |
Release |
: 2013-03-09 |
ISBN-10 |
: 9783662043783 |
ISBN-13 |
: 3662043785 |
Rating |
: 4/5 (83 Downloads) |
Synopsis The Theory of Evolution Strategies by : Hans-Georg Beyer
Evolutionary algorithms, such as evolution strategies, genetic algorithms, or evolutionary programming, have found broad acceptance in the last ten years. In contrast to its broad propagation, theoretical analysis in this subject has not progressed as much. This monograph provides the framework and the first steps toward the theoretical analysis of Evolution Strategies (ES). The main emphasis is deriving a qualitative understanding of why and how these ES algorithms work.
Author |
: Seyedali Mirjalili |
Publisher |
: Springer |
Total Pages |
: 164 |
Release |
: 2018-06-26 |
ISBN-10 |
: 9783319930251 |
ISBN-13 |
: 3319930257 |
Rating |
: 4/5 (51 Downloads) |
Synopsis Evolutionary Algorithms and Neural Networks by : Seyedali Mirjalili
This book introduces readers to the fundamentals of artificial neural networks, with a special emphasis on evolutionary algorithms. At first, the book offers a literature review of several well-regarded evolutionary algorithms, including particle swarm and ant colony optimization, genetic algorithms and biogeography-based optimization. It then proposes evolutionary version of several types of neural networks such as feed forward neural networks, radial basis function networks, as well as recurrent neural networks and multi-later perceptron. Most of the challenges that have to be addressed when training artificial neural networks using evolutionary algorithms are discussed in detail. The book also demonstrates the application of the proposed algorithms for several purposes such as classification, clustering, approximation, and prediction problems. It provides a tutorial on how to design, adapt, and evaluate artificial neural networks as well, and includes source codes for most of the proposed techniques as supplementary materials.
Author |
: David B. Fogel |
Publisher |
: John Wiley & Sons |
Total Pages |
: 294 |
Release |
: 2006-01-03 |
ISBN-10 |
: 9780471749202 |
ISBN-13 |
: 0471749206 |
Rating |
: 4/5 (02 Downloads) |
Synopsis Evolutionary Computation by : David B. Fogel
This Third Edition provides the latest tools and techniques that enable computers to learn The Third Edition of this internationally acclaimed publication provides the latest theory and techniques for using simulated evolution to achieve machine intelligence. As a leading advocate for evolutionary computation, the author has successfully challenged the traditional notion of artificial intelligence, which essentially programs human knowledge fact by fact, but does not have the capacity to learn or adapt as evolutionary computation does. Readers gain an understanding of the history of evolutionary computation, which provides a foundation for the author's thorough presentation of the latest theories shaping current research. Balancing theory with practice, the author provides readers with the skills they need to apply evolutionary algorithms that can solve many of today's intransigent problems by adapting to new challenges and learning from experience. Several examples are provided that demonstrate how these evolutionary algorithms learn to solve problems. In particular, the author provides a detailed example of how an algorithm is used to evolve strategies for playing chess and checkers. As readers progress through the publication, they gain an increasing appreciation and understanding of the relationship between learning and intelligence. Readers familiar with the previous editions will discover much new and revised material that brings the publication thoroughly up to date with the latest research, including the latest theories and empirical properties of evolutionary computation. The Third Edition also features new knowledge-building aids. Readers will find a host of new and revised examples. New questions at the end of each chapter enable readers to test their knowledge. Intriguing assignments that prepare readers to manage challenges in industry and research have been added to the end of each chapter as well. This is a must-have reference for professionals in computer and electrical engineering; it provides them with the very latest techniques and applications in machine intelligence. With its question sets and assignments, the publication is also recommended as a graduate-level textbook.
Author |
: Xin Yao |
Publisher |
: World Scientific |
Total Pages |
: 376 |
Release |
: 1999-11-22 |
ISBN-10 |
: 9789814518161 |
ISBN-13 |
: 9814518166 |
Rating |
: 4/5 (61 Downloads) |
Synopsis Evolutionary Computation: Theory And Applications by : Xin Yao
Evolutionary computation is the study of computational systems which use ideas and get inspiration from natural evolution and adaptation. This book is devoted to the theory and application of evolutionary computation. It is a self-contained volume which covers both introductory material and selected advanced topics. The book can roughly be divided into two major parts: the introductory one and the one on selected advanced topics. Each part consists of several chapters which present an in-depth discussion of selected topics. A strong connection is established between evolutionary algorithms and traditional search algorithms. This connection enables us to incorporate ideas in more established fields into evolutionary algorithms. The book is aimed at a wide range of readers. It does not require previous exposure to the field since introductory material is included. It will be of interest to anyone who is interested in adaptive optimization and learning. People in computer science, artificial intelligence, operations research, and various engineering fields will find it particularly interesting.