Evolutionary Optimization Algorithms
Download Evolutionary Optimization Algorithms full books in PDF, epub, and Kindle. Read online free Evolutionary Optimization Algorithms ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Dan Simon |
Publisher |
: John Wiley & Sons |
Total Pages |
: 776 |
Release |
: 2013-06-13 |
ISBN-10 |
: 9781118659502 |
ISBN-13 |
: 1118659503 |
Rating |
: 4/5 (02 Downloads) |
Synopsis Evolutionary Optimization Algorithms by : Dan Simon
A clear and lucid bottom-up approach to the basic principles of evolutionary algorithms Evolutionary algorithms (EAs) are a type of artificial intelligence. EAs are motivated by optimization processes that we observe in nature, such as natural selection, species migration, bird swarms, human culture, and ant colonies. This book discusses the theory, history, mathematics, and programming of evolutionary optimization algorithms. Featured algorithms include genetic algorithms, genetic programming, ant colony optimization, particle swarm optimization, differential evolution, biogeography-based optimization, and many others. Evolutionary Optimization Algorithms: Provides a straightforward, bottom-up approach that assists the reader in obtaining a clear but theoretically rigorous understanding of evolutionary algorithms, with an emphasis on implementation Gives a careful treatment of recently developed EAs including opposition-based learning, artificial fish swarms, bacterial foraging, and many others and discusses their similarities and differences from more well-established EAs Includes chapter-end problems plus a solutions manual available online for instructors Offers simple examples that provide the reader with an intuitive understanding of the theory Features source code for the examples available on the author's website Provides advanced mathematical techniques for analyzing EAs, including Markov modeling and dynamic system modeling Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence is an ideal text for advanced undergraduate students, graduate students, and professionals involved in engineering and computer science.
Author |
: Ruhul Sarker |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 416 |
Release |
: 2002-01-31 |
ISBN-10 |
: 9780792376545 |
ISBN-13 |
: 0792376544 |
Rating |
: 4/5 (45 Downloads) |
Synopsis Evolutionary Optimization by : Ruhul Sarker
The use of evolutionary computation techniques has grown considerably over the past several years. Over this time, the use and applications of these techniques have been further enhanced resulting in a set of computational intelligence (also known as modern heuristics) tools that are particularly adept for solving complex optimization problems. Moreover, they are characteristically more robust than traditional methods based on formal logics or mathematical programming for many real world OR/MS problems. Hence, evolutionary computation techniques have dealt with complex optimization problems better than traditional optimization techniques although they can be applied to easy and simple problems where conventional techniques work well. Clearly there is a need for a volume that both reviews state-of-the-art evolutionary computation techniques, and surveys the most recent developments in their use for solving complex OR/MS problems. This volume on Evolutionary Optimization seeks to fill this need. Evolutionary Optimization is a volume of invited papers written by leading researchers in the field. All papers were peer reviewed by at least two recognized reviewers. The book covers the foundation as well as the practical side of evolutionary optimization.
Author |
: Altaf Q. H. Badar |
Publisher |
: CRC Press |
Total Pages |
: 274 |
Release |
: 2021-10-29 |
ISBN-10 |
: 9781000462142 |
ISBN-13 |
: 1000462145 |
Rating |
: 4/5 (42 Downloads) |
Synopsis Evolutionary Optimization Algorithms by : Altaf Q. H. Badar
This comprehensive reference text discusses evolutionary optimization techniques, to find optimal solutions for single and multi-objective problems. The text presents each evolutionary optimization algorithm along with its history and other working equations. It also discusses variants and hybrids of optimization techniques. The text presents step-by-step solution to a problem and includes software’s like MATLAB and Python for solving optimization problems. It covers important optimization algorithms including single objective optimization, multi objective optimization, Heuristic optimization techniques, shuffled frog leaping algorithm, bacteria foraging algorithm and firefly algorithm. Aimed at senior undergraduate and graduate students in the field of electrical engineering, electronics engineering, mechanical engineering, and computer science and engineering, this text: Provides step-by-step solution for each evolutionary optimization algorithm. Provides flowcharts and graphics for better understanding of optimization techniques. Discusses popular optimization techniques include particle swarm optimization and genetic algorithm. Presents every optimization technique along with the history and working equations. Includes latest software like Python and MATLAB.
Author |
: Carlos Coello Coello |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 810 |
Release |
: 2007-08-26 |
ISBN-10 |
: 9780387367972 |
ISBN-13 |
: 0387367977 |
Rating |
: 4/5 (72 Downloads) |
Synopsis Evolutionary Algorithms for Solving Multi-Objective Problems by : Carlos Coello Coello
This textbook is a second edition of Evolutionary Algorithms for Solving Multi-Objective Problems, significantly expanded and adapted for the classroom. The various features of multi-objective evolutionary algorithms are presented here in an innovative and student-friendly fashion, incorporating state-of-the-art research. The book disseminates the application of evolutionary algorithm techniques to a variety of practical problems. It contains exhaustive appendices, index and bibliography and links to a complete set of teaching tutorials, exercises and solutions.
Author |
: Alain Petrowski |
Publisher |
: John Wiley & Sons |
Total Pages |
: 260 |
Release |
: 2017-04-24 |
ISBN-10 |
: 9781848218048 |
ISBN-13 |
: 1848218044 |
Rating |
: 4/5 (48 Downloads) |
Synopsis Evolutionary Algorithms by : Alain Petrowski
Evolutionary algorithms are bio-inspired algorithms based on Darwin’s theory of evolution. They are expected to provide non-optimal but good quality solutions to problems whose resolution is impracticable by exact methods. In six chapters, this book presents the essential knowledge required to efficiently implement evolutionary algorithms. Chapter 1 describes a generic evolutionary algorithm as well as the basic operators that compose it. Chapter 2 is devoted to the solving of continuous optimization problems, without constraint. Three leading approaches are described and compared on a set of test functions. Chapter 3 considers continuous optimization problems with constraints. Various approaches suitable for evolutionary methods are presented. Chapter 4 is related to combinatorial optimization. It provides a catalog of variation operators to deal with order-based problems. Chapter 5 introduces the basic notions required to understand the issue of multi-objective optimization and a variety of approaches for its application. Finally, Chapter 6 describes different approaches of genetic programming able to evolve computer programs in the context of machine learning.
Author |
: Chis, Monica |
Publisher |
: IGI Global |
Total Pages |
: 282 |
Release |
: 2010-06-30 |
ISBN-10 |
: 9781615208104 |
ISBN-13 |
: 1615208100 |
Rating |
: 4/5 (04 Downloads) |
Synopsis Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques by : Chis, Monica
Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques lays the foundation for the successful integration of evolutionary computation into software engineering. It surveys techniques ranging from genetic algorithms, to swarm optimization theory, to ant colony optimization, demonstrating their uses and capabilities. These techniques are applied to aspects of software engineering such as software testing, quality assessment, reliability assessment, and fault prediction models, among others, to providing researchers, scholars and students with the knowledge needed to expand this burgeoning application.
Author |
: Xinjie Yu |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 427 |
Release |
: 2010-06-10 |
ISBN-10 |
: 9781849961295 |
ISBN-13 |
: 1849961298 |
Rating |
: 4/5 (95 Downloads) |
Synopsis Introduction to Evolutionary Algorithms by : Xinjie Yu
Evolutionary algorithms are becoming increasingly attractive across various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science and economics. Introduction to Evolutionary Algorithms presents an insightful, comprehensive, and up-to-date treatment of evolutionary algorithms. It covers such hot topics as: • genetic algorithms, • differential evolution, • swarm intelligence, and • artificial immune systems. The reader is introduced to a range of applications, as Introduction to Evolutionary Algorithms demonstrates how to model real world problems, how to encode and decode individuals, and how to design effective search operators according to the chromosome structures with examples of constraint optimization, multiobjective optimization, combinatorial optimization, and supervised/unsupervised learning. This emphasis on practical applications will benefit all students, whether they choose to continue their academic career or to enter a particular industry. Introduction to Evolutionary Algorithms is intended as a textbook or self-study material for both advanced undergraduates and graduate students. Additional features such as recommended further reading and ideas for research projects combine to form an accessible and interesting pedagogical approach to this widely used discipline.
Author |
: Yaochu Jin |
Publisher |
: Springer Nature |
Total Pages |
: 393 |
Release |
: 2021-06-28 |
ISBN-10 |
: 9783030746407 |
ISBN-13 |
: 3030746402 |
Rating |
: 4/5 (07 Downloads) |
Synopsis Data-Driven Evolutionary Optimization by : Yaochu Jin
Intended for researchers and practitioners alike, this book covers carefully selected yet broad topics in optimization, machine learning, and metaheuristics. Written by world-leading academic researchers who are extremely experienced in industrial applications, this self-contained book is the first of its kind that provides comprehensive background knowledge, particularly practical guidelines, and state-of-the-art techniques. New algorithms are carefully explained, further elaborated with pseudocode or flowcharts, and full working source code is made freely available. This is followed by a presentation of a variety of data-driven single- and multi-objective optimization algorithms that seamlessly integrate modern machine learning such as deep learning and transfer learning with evolutionary and swarm optimization algorithms. Applications of data-driven optimization ranging from aerodynamic design, optimization of industrial processes, to deep neural architecture search are included.
Author |
: Seyedali Mirjalili |
Publisher |
: Springer |
Total Pages |
: 164 |
Release |
: 2018-06-26 |
ISBN-10 |
: 9783319930251 |
ISBN-13 |
: 3319930257 |
Rating |
: 4/5 (51 Downloads) |
Synopsis Evolutionary Algorithms and Neural Networks by : Seyedali Mirjalili
This book introduces readers to the fundamentals of artificial neural networks, with a special emphasis on evolutionary algorithms. At first, the book offers a literature review of several well-regarded evolutionary algorithms, including particle swarm and ant colony optimization, genetic algorithms and biogeography-based optimization. It then proposes evolutionary version of several types of neural networks such as feed forward neural networks, radial basis function networks, as well as recurrent neural networks and multi-later perceptron. Most of the challenges that have to be addressed when training artificial neural networks using evolutionary algorithms are discussed in detail. The book also demonstrates the application of the proposed algorithms for several purposes such as classification, clustering, approximation, and prediction problems. It provides a tutorial on how to design, adapt, and evaluate artificial neural networks as well, and includes source codes for most of the proposed techniques as supplementary materials.
Author |
: Jürgen Branke |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 217 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461509110 |
ISBN-13 |
: 1461509114 |
Rating |
: 4/5 (10 Downloads) |
Synopsis Evolutionary Optimization in Dynamic Environments by : Jürgen Branke
Evolutionary Algorithms (EAs) have grown into a mature field of research in optimization, and have proven to be effective and robust problem solvers for a broad range of static real-world optimization problems. Yet, since they are based on the principles of natural evolution, and since natural evolution is a dynamic process in a changing environment, EAs are also well suited to dynamic optimization problems. Evolutionary Optimization in Dynamic Environments is the first comprehensive work on the application of EAs to dynamic optimization problems. It provides an extensive survey on research in the area and shows how EAs can be successfully used to continuously and efficiently adapt a solution to a changing environment, find a good trade-off between solution quality and adaptation cost, find robust solutions whose quality is insensitive to changes in the environment, find flexible solutions which are not only good but that can be easily adapted when necessary. All four aspects are treated in this book, providing a holistic view on the challenges and opportunities when applying EAs to dynamic optimization problems. The comprehensive and up-to-date coverage of the subject, together with details of latest original research, makes Evolutionary Optimization in Dynamic Environments an invaluable resource for researchers and professionals who are dealing with dynamic and stochastic optimization problems, and who are interested in applying local search heuristics, such as evolutionary algorithms.