The Computational Brain

The Computational Brain
Author :
Publisher : MIT Press
Total Pages : 564
Release :
ISBN-10 : 0262531208
ISBN-13 : 9780262531207
Rating : 4/5 (08 Downloads)

Synopsis The Computational Brain by : Patricia Smith Churchland

"The Computational Brain addresses a broad audience: neuroscientists, computer scientists, cognitive scientists, and philosophers. It is written for both the expert and novice. A basic overview of neuroscience and computational theory is provided, followed by a study of some of the most recent and sophisticated modeling work in the context of relevant neurobiological research. Technical terms are clearly explained in the text, and definitions are provided in an extensive glossary. The appendix contains a précis of neurobiological techniques."--Jacket.

Memory and the Computational Brain

Memory and the Computational Brain
Author :
Publisher : Wiley-Blackwell
Total Pages : 336
Release :
ISBN-10 : 1405122870
ISBN-13 : 9781405122870
Rating : 4/5 (70 Downloads)

Synopsis Memory and the Computational Brain by : C. R. Gallistel

Memory and the Computational Brain offers a provocative argument that goes to the heart of neuroscience, proposing that the field can and should benefit from the recent advances of cognitive science and the development of information theory over the course of the last several decades. A provocative argument that impacts across the fields of linguistics, cognitive science, and neuroscience, suggesting new perspectives on learning mechanisms in the brain Proposes that the field of neuroscience can and should benefit from the recent advances of cognitive science and the development of information theory Suggests that the architecture of the brain is structured precisely for learning and for memory, and integrates the concept of an addressable read/write memory mechanism into the foundations of neuroscience Based on lectures in the prestigious Blackwell-Maryland Lectures in Language and Cognition, and now significantly reworked and expanded to make it ideal for students and faculty

Computational Models of Brain and Behavior

Computational Models of Brain and Behavior
Author :
Publisher : John Wiley & Sons
Total Pages : 588
Release :
ISBN-10 : 9781119159070
ISBN-13 : 1119159075
Rating : 4/5 (70 Downloads)

Synopsis Computational Models of Brain and Behavior by : Ahmed A. Moustafa

A comprehensive Introduction to the world of brain and behavior computational models This book provides a broad collection of articles covering different aspects of computational modeling efforts in psychology and neuroscience. Specifically, it discusses models that span different brain regions (hippocampus, amygdala, basal ganglia, visual cortex), different species (humans, rats, fruit flies), and different modeling methods (neural network, Bayesian, reinforcement learning, data fitting, and Hodgkin-Huxley models, among others). Computational Models of Brain and Behavior is divided into four sections: (a) Models of brain disorders; (b) Neural models of behavioral processes; (c) Models of neural processes, brain regions and neurotransmitters, and (d) Neural modeling approaches. It provides in-depth coverage of models of psychiatric disorders, including depression, posttraumatic stress disorder (PTSD), schizophrenia, and dyslexia; models of neurological disorders, including Alzheimer’s disease, Parkinson’s disease, and epilepsy; early sensory and perceptual processes; models of olfaction; higher/systems level models and low-level models; Pavlovian and instrumental conditioning; linking information theory to neurobiology; and more. Covers computational approximations to intellectual disability in down syndrome Discusses computational models of pharmacological and immunological treatment in Alzheimer's disease Examines neural circuit models of serotonergic system (from microcircuits to cognition) Educates on information theory, memory, prediction, and timing in associative learning Computational Models of Brain and Behavior is written for advanced undergraduate, Master's and PhD-level students—as well as researchers involved in computational neuroscience modeling research.

Computational Explorations in Cognitive Neuroscience

Computational Explorations in Cognitive Neuroscience
Author :
Publisher : MIT Press
Total Pages : 540
Release :
ISBN-10 : 0262650541
ISBN-13 : 9780262650540
Rating : 4/5 (41 Downloads)

Synopsis Computational Explorations in Cognitive Neuroscience by : Randall C. O'Reilly

This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the computational cognitive neuroscience. The goal of computational cognitive neuroscience is to understand how the brain embodies the mind by using biologically based computational models comprising networks of neuronlike units. This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the field. The neural units in the simulations use equations based directly on the ion channels that govern the behavior of real neurons, and the neural networks incorporate anatomical and physiological properties of the neocortex. Thus the text provides the student with knowledge of the basic biology of the brain as well as the computational skills needed to simulate large-scale cognitive phenomena. The text consists of two parts. The first part covers basic neural computation mechanisms: individual neurons, neural networks, and learning mechanisms. The second part covers large-scale brain area organization and cognitive phenomena: perception and attention, memory, language, and higher-level cognition. The second part is relatively self-contained and can be used separately for mechanistically oriented cognitive neuroscience courses. Integrated throughout the text are more than forty different simulation models, many of them full-scale research-grade models, with friendly interfaces and accompanying exercises. The simulation software (PDP++, available for all major platforms) and simulations can be downloaded free of charge from the Web. Exercise solutions are available, and the text includes full information on the software.

Fundamentals of Computational Neuroscience

Fundamentals of Computational Neuroscience
Author :
Publisher : Oxford University Press
Total Pages : 417
Release :
ISBN-10 : 9780199568413
ISBN-13 : 0199568413
Rating : 4/5 (13 Downloads)

Synopsis Fundamentals of Computational Neuroscience by : Thomas Trappenberg

The new edition of Fundamentals of Computational Neuroscience build on the success and strengths of the first edition. Completely redesigned and revised, it introduces the theoretical foundations of neuroscience with a focus on the nature of information processing in the brain.

Bayesian Brain

Bayesian Brain
Author :
Publisher : MIT Press
Total Pages : 341
Release :
ISBN-10 : 9780262042383
ISBN-13 : 026204238X
Rating : 4/5 (83 Downloads)

Synopsis Bayesian Brain by : Kenji Doya

Experimental and theoretical neuroscientists use Bayesian approaches to analyze the brain mechanisms of perception, decision-making, and motor control.

Large-scale Neuronal Theories of the Brain

Large-scale Neuronal Theories of the Brain
Author :
Publisher : MIT Press
Total Pages : 376
Release :
ISBN-10 : 0262111837
ISBN-13 : 9780262111836
Rating : 4/5 (37 Downloads)

Synopsis Large-scale Neuronal Theories of the Brain by : Christof Koch

This book originated at a small and informal workshop held in December of 1992 in Idyllwild, a relatively secluded resort village situated amid forests in the San Jacinto Mountains above Palm Springs in Southern California. Eighteen colleagues from a broad range of disciplines, including biophysics, electrophysiology, neuroanatomy, psychophysics, clinical studies, mathematics and computer vision, discussed 'Large Scale Models of the Brain, ' that is, theories and models that cover a broad range of phenomena, including early and late vision, various memory systems, selective attention, and the neuronal code underlying figure-ground segregation and awareness (for a brief summary of this meeting, see Stevens 1993). The bias in the selection of the speakers toward researchers in the area of visual perception reflects both the academic background of one of the organizers as well as the (relative) more mature status of vision compared with other modalities. This should not be surprising given the emphasis we humans place on'seeing' for orienting ourselves, as well as the intense scrutiny visual processes have received due to their obvious usefullness in military, industrial, and robotic applications. JMD.

From Neuron to Cognition via Computational Neuroscience

From Neuron to Cognition via Computational Neuroscience
Author :
Publisher : MIT Press
Total Pages : 810
Release :
ISBN-10 : 9780262335270
ISBN-13 : 0262335271
Rating : 4/5 (70 Downloads)

Synopsis From Neuron to Cognition via Computational Neuroscience by : Michael A. Arbib

A comprehensive, integrated, and accessible textbook presenting core neuroscientific topics from a computational perspective, tracing a path from cells and circuits to behavior and cognition. This textbook presents a wide range of subjects in neuroscience from a computational perspective. It offers a comprehensive, integrated introduction to core topics, using computational tools to trace a path from neurons and circuits to behavior and cognition. Moreover, the chapters show how computational neuroscience—methods for modeling the causal interactions underlying neural systems—complements empirical research in advancing the understanding of brain and behavior. The chapters—all by leaders in the field, and carefully integrated by the editors—cover such subjects as action and motor control; neuroplasticity, neuromodulation, and reinforcement learning; vision; and language—the core of human cognition. The book can be used for advanced undergraduate or graduate level courses. It presents all necessary background in neuroscience beyond basic facts about neurons and synapses and general ideas about the structure and function of the human brain. Students should be familiar with differential equations and probability theory, and be able to pick up the basics of programming in MATLAB and/or Python. Slides, exercises, and other ancillary materials are freely available online, and many of the models described in the chapters are documented in the brain operation database, BODB (which is also described in a book chapter). Contributors Michael A. Arbib, Joseph Ayers, James Bednar, Andrej Bicanski, James J. Bonaiuto, Nicolas Brunel, Jean-Marie Cabelguen, Carmen Canavier, Angelo Cangelosi, Richard P. Cooper, Carlos R. Cortes, Nathaniel Daw, Paul Dean, Peter Ford Dominey, Pierre Enel, Jean-Marc Fellous, Stefano Fusi, Wulfram Gerstner, Frank Grasso, Jacqueline A. Griego, Ziad M. Hafed, Michael E. Hasselmo, Auke Ijspeert, Stephanie Jones, Daniel Kersten, Jeremie Knuesel, Owen Lewis, William W. Lytton, Tomaso Poggio, John Porrill, Tony J. Prescott, John Rinzel, Edmund Rolls, Jonathan Rubin, Nicolas Schweighofer, Mohamed A. Sherif, Malle A. Tagamets, Paul F. M. J. Verschure, Nathan Vierling-Claasen, Xiao-Jing Wang, Christopher Williams, Ransom Winder, Alan L. Yuille

Computational Neuroscience: Theoretical Insights into Brain Function

Computational Neuroscience: Theoretical Insights into Brain Function
Author :
Publisher : Elsevier
Total Pages : 571
Release :
ISBN-10 : 9780080555027
ISBN-13 : 0080555020
Rating : 4/5 (27 Downloads)

Synopsis Computational Neuroscience: Theoretical Insights into Brain Function by : Paul Cisek

Computational neuroscience is a relatively new but rapidly expanding area of research which is becoming increasingly influential in shaping the way scientists think about the brain. Computational approaches have been applied at all levels of analysis, from detailed models of single-channel function, transmembrane currents, single-cell electrical activity, and neural signaling to broad theories of sensory perception, memory, and cognition. This book provides a snapshot of this exciting new field by bringing together chapters on a diversity of topics from some of its most important contributors. This includes chapters on neural coding in single cells, in small networks, and across the entire cerebral cortex, visual processing from the retina to object recognition, neural processing of auditory, vestibular, and electromagnetic stimuli, pattern generation, voluntary movement and posture, motor learning, decision-making and cognition, and algorithms for pattern recognition. Each chapter provides a bridge between a body of data on neural function and a mathematical approach used to interpret and explain that data. These contributions demonstrate how computational approaches have become an essential tool which is integral in many aspects of brain science, from the interpretation of data to the design of new experiments, and to the growth of our understanding of neural function.• Includes contributions by some of the most influential people in the field of computational neuroscience• Demonstrates how computational approaches are being used today to interpret experimental data• Covers a wide range of topics from single neurons, to neural systems, to abstract models of learning

An Introductory Course in Computational Neuroscience

An Introductory Course in Computational Neuroscience
Author :
Publisher : MIT Press
Total Pages : 405
Release :
ISBN-10 : 9780262347563
ISBN-13 : 0262347563
Rating : 4/5 (63 Downloads)

Synopsis An Introductory Course in Computational Neuroscience by : Paul Miller

A textbook for students with limited background in mathematics and computer coding, emphasizing computer tutorials that guide readers in producing models of neural behavior. This introductory text teaches students to understand, simulate, and analyze the complex behaviors of individual neurons and brain circuits. It is built around computer tutorials that guide students in producing models of neural behavior, with the associated Matlab code freely available online. From these models students learn how individual neurons function and how, when connected, neurons cooperate in a circuit. The book demonstrates through simulated models how oscillations, multistability, post-stimulus rebounds, and chaos can arise within either single neurons or circuits, and it explores their roles in the brain. The book first presents essential background in neuroscience, physics, mathematics, and Matlab, with explanations illustrated by many example problems. Subsequent chapters cover the neuron and spike production; single spike trains and the underlying cognitive processes; conductance-based models; the simulation of synaptic connections; firing-rate models of large-scale circuit operation; dynamical systems and their components; synaptic plasticity; and techniques for analysis of neuron population datasets, including principal components analysis, hidden Markov modeling, and Bayesian decoding. Accessible to undergraduates in life sciences with limited background in mathematics and computer coding, the book can be used in a “flipped” or “inverted” teaching approach, with class time devoted to hands-on work on the computer tutorials. It can also be a resource for graduate students in the life sciences who wish to gain computing skills and a deeper knowledge of neural function and neural circuits.