From Neuron to Cognition via Computational Neuroscience

From Neuron to Cognition via Computational Neuroscience
Author :
Publisher : MIT Press
Total Pages : 810
Release :
ISBN-10 : 9780262335270
ISBN-13 : 0262335271
Rating : 4/5 (70 Downloads)

Synopsis From Neuron to Cognition via Computational Neuroscience by : Michael A. Arbib

A comprehensive, integrated, and accessible textbook presenting core neuroscientific topics from a computational perspective, tracing a path from cells and circuits to behavior and cognition. This textbook presents a wide range of subjects in neuroscience from a computational perspective. It offers a comprehensive, integrated introduction to core topics, using computational tools to trace a path from neurons and circuits to behavior and cognition. Moreover, the chapters show how computational neuroscience—methods for modeling the causal interactions underlying neural systems—complements empirical research in advancing the understanding of brain and behavior. The chapters—all by leaders in the field, and carefully integrated by the editors—cover such subjects as action and motor control; neuroplasticity, neuromodulation, and reinforcement learning; vision; and language—the core of human cognition. The book can be used for advanced undergraduate or graduate level courses. It presents all necessary background in neuroscience beyond basic facts about neurons and synapses and general ideas about the structure and function of the human brain. Students should be familiar with differential equations and probability theory, and be able to pick up the basics of programming in MATLAB and/or Python. Slides, exercises, and other ancillary materials are freely available online, and many of the models described in the chapters are documented in the brain operation database, BODB (which is also described in a book chapter). Contributors Michael A. Arbib, Joseph Ayers, James Bednar, Andrej Bicanski, James J. Bonaiuto, Nicolas Brunel, Jean-Marie Cabelguen, Carmen Canavier, Angelo Cangelosi, Richard P. Cooper, Carlos R. Cortes, Nathaniel Daw, Paul Dean, Peter Ford Dominey, Pierre Enel, Jean-Marc Fellous, Stefano Fusi, Wulfram Gerstner, Frank Grasso, Jacqueline A. Griego, Ziad M. Hafed, Michael E. Hasselmo, Auke Ijspeert, Stephanie Jones, Daniel Kersten, Jeremie Knuesel, Owen Lewis, William W. Lytton, Tomaso Poggio, John Porrill, Tony J. Prescott, John Rinzel, Edmund Rolls, Jonathan Rubin, Nicolas Schweighofer, Mohamed A. Sherif, Malle A. Tagamets, Paul F. M. J. Verschure, Nathan Vierling-Claasen, Xiao-Jing Wang, Christopher Williams, Ransom Winder, Alan L. Yuille

From Neuron to Cognition via Computational Neuroscience

From Neuron to Cognition via Computational Neuroscience
Author :
Publisher : MIT Press
Total Pages : 810
Release :
ISBN-10 : 9780262034968
ISBN-13 : 0262034964
Rating : 4/5 (68 Downloads)

Synopsis From Neuron to Cognition via Computational Neuroscience by : Michael A. Arbib

A comprehensive, integrated, and accessible textbook presenting core neuroscientific topics from a computational perspective, tracing a path from cells and circuits to behavior and cognition. This textbook presents a wide range of subjects in neuroscience from a computational perspective. It offers a comprehensive, integrated introduction to core topics, using computational tools to trace a path from neurons and circuits to behavior and cognition. Moreover, the chapters show how computational neuroscience—methods for modeling the causal interactions underlying neural systems—complements empirical research in advancing the understanding of brain and behavior. The chapters—all by leaders in the field, and carefully integrated by the editors—cover such subjects as action and motor control; neuroplasticity, neuromodulation, and reinforcement learning; vision; and language—the core of human cognition. The book can be used for advanced undergraduate or graduate level courses. It presents all necessary background in neuroscience beyond basic facts about neurons and synapses and general ideas about the structure and function of the human brain. Students should be familiar with differential equations and probability theory, and be able to pick up the basics of programming in MATLAB and/or Python. Slides, exercises, and other ancillary materials are freely available online, and many of the models described in the chapters are documented in the brain operation database, BODB (which is also described in a book chapter). Contributors Michael A. Arbib, Joseph Ayers, James Bednar, Andrej Bicanski, James J. Bonaiuto, Nicolas Brunel, Jean-Marie Cabelguen, Carmen Canavier, Angelo Cangelosi, Richard P. Cooper, Carlos R. Cortes, Nathaniel Daw, Paul Dean, Peter Ford Dominey, Pierre Enel, Jean-Marc Fellous, Stefano Fusi, Wulfram Gerstner, Frank Grasso, Jacqueline A. Griego, Ziad M. Hafed, Michael E. Hasselmo, Auke Ijspeert, Stephanie Jones, Daniel Kersten, Jeremie Knuesel, Owen Lewis, William W. Lytton, Tomaso Poggio, John Porrill, Tony J. Prescott, John Rinzel, Edmund Rolls, Jonathan Rubin, Nicolas Schweighofer, Mohamed A. Sherif, Malle A. Tagamets, Paul F. M. J. Verschure, Nathan Vierling-Claasen, Xiao-Jing Wang, Christopher Williams, Ransom Winder, Alan L. Yuille

An Introductory Course in Computational Neuroscience

An Introductory Course in Computational Neuroscience
Author :
Publisher : MIT Press
Total Pages : 405
Release :
ISBN-10 : 9780262347563
ISBN-13 : 0262347563
Rating : 4/5 (63 Downloads)

Synopsis An Introductory Course in Computational Neuroscience by : Paul Miller

A textbook for students with limited background in mathematics and computer coding, emphasizing computer tutorials that guide readers in producing models of neural behavior. This introductory text teaches students to understand, simulate, and analyze the complex behaviors of individual neurons and brain circuits. It is built around computer tutorials that guide students in producing models of neural behavior, with the associated Matlab code freely available online. From these models students learn how individual neurons function and how, when connected, neurons cooperate in a circuit. The book demonstrates through simulated models how oscillations, multistability, post-stimulus rebounds, and chaos can arise within either single neurons or circuits, and it explores their roles in the brain. The book first presents essential background in neuroscience, physics, mathematics, and Matlab, with explanations illustrated by many example problems. Subsequent chapters cover the neuron and spike production; single spike trains and the underlying cognitive processes; conductance-based models; the simulation of synaptic connections; firing-rate models of large-scale circuit operation; dynamical systems and their components; synaptic plasticity; and techniques for analysis of neuron population datasets, including principal components analysis, hidden Markov modeling, and Bayesian decoding. Accessible to undergraduates in life sciences with limited background in mathematics and computer coding, the book can be used in a “flipped” or “inverted” teaching approach, with class time devoted to hands-on work on the computer tutorials. It can also be a resource for graduate students in the life sciences who wish to gain computing skills and a deeper knowledge of neural function and neural circuits.

Biophysics of Computation

Biophysics of Computation
Author :
Publisher : Oxford University Press
Total Pages : 587
Release :
ISBN-10 : 9780195181999
ISBN-13 : 0195181999
Rating : 4/5 (99 Downloads)

Synopsis Biophysics of Computation by : Christof Koch

Neural network research often builds on the fiction that neurons are simple linear threshold units, completely neglecting the highly dynamic and complex nature of synapses, dendrites, and voltage-dependent ionic currents. Biophysics of Computation: Information Processing in Single Neurons challenges this notion, using richly detailed experimental and theoretical findings from cellular biophysics to explain the repertoire of computational functions available to single neurons. The author shows how individual nerve cells can multiply, integrate, or delay synaptic inputs and how information can be encoded in the voltage across the membrane, in the intracellular calcium concentration, or in the timing of individual spikes.Key topics covered include the linear cable equation; cable theory as applied to passive dendritic trees and dendritic spines; chemical and electrical synapses and how to treat them from a computational point of view; nonlinear interactions of synaptic input in passive and active dendritic trees; the Hodgkin-Huxley model of action potential generation and propagation; phase space analysis; linking stochastic ionic channels to membrane-dependent currents; calcium and potassium currents and their role in information processing; the role of diffusion, buffering and binding of calcium, and other messenger systems in information processing and storage; short- and long-term models of synaptic plasticity; simplified models of single cells; stochastic aspects of neuronal firing; the nature of the neuronal code; and unconventional models of sub-cellular computation.Biophysics of Computation: Information Processing in Single Neurons serves as an ideal text for advanced undergraduate and graduate courses in cellular biophysics, computational neuroscience, and neural networks, and will appeal to students and professionals in neuroscience, electrical and computer engineering, and physics.

Neuronal Dynamics

Neuronal Dynamics
Author :
Publisher : Cambridge University Press
Total Pages : 591
Release :
ISBN-10 : 9781107060838
ISBN-13 : 1107060834
Rating : 4/5 (38 Downloads)

Synopsis Neuronal Dynamics by : Wulfram Gerstner

This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.

Action to Language via the Mirror Neuron System

Action to Language via the Mirror Neuron System
Author :
Publisher : Cambridge University Press
Total Pages : 524
Release :
ISBN-10 : 9781139458139
ISBN-13 : 1139458132
Rating : 4/5 (39 Downloads)

Synopsis Action to Language via the Mirror Neuron System by : Michael A. Arbib

In this book, internationally recognised experts from child development, computer science, linguistics, neuroscience, primatology and robotics discuss the role of the mirror neuron system for the recognition of hand actions and the evolutionary basis for the brain mechanisms that support language.

Fundamentals of Computational Neuroscience

Fundamentals of Computational Neuroscience
Author :
Publisher : Oxford University Press
Total Pages : 417
Release :
ISBN-10 : 9780199568413
ISBN-13 : 0199568413
Rating : 4/5 (13 Downloads)

Synopsis Fundamentals of Computational Neuroscience by : Thomas Trappenberg

The new edition of Fundamentals of Computational Neuroscience build on the success and strengths of the first edition. Completely redesigned and revised, it introduces the theoretical foundations of neuroscience with a focus on the nature of information processing in the brain.

The Spike

The Spike
Author :
Publisher : Princeton University Press
Total Pages : 232
Release :
ISBN-10 : 9780691213514
ISBN-13 : 0691213518
Rating : 4/5 (14 Downloads)

Synopsis The Spike by : Mark Humphries

The story of a neural impulse and what it reveals about how our brains work We see the last cookie in the box and think, can I take that? We reach a hand out. In the 2.1 seconds that this impulse travels through our brain, billions of neurons communicate with one another, sending blips of voltage through our sensory and motor regions. Neuroscientists call these blips “spikes.” Spikes enable us to do everything: talk, eat, run, see, plan, and decide. In The Spike, Mark Humphries takes readers on the epic journey of a spike through a single, brief reaction. In vivid language, Humphries tells the story of what happens in our brain, what we know about spikes, and what we still have left to understand about them. Drawing on decades of research in neuroscience, Humphries explores how spikes are born, how they are transmitted, and how they lead us to action. He dives into previously unanswered mysteries: Why are most neurons silent? What causes neurons to fire spikes spontaneously, without input from other neurons or the outside world? Why do most spikes fail to reach any destination? Humphries presents a new vision of the brain, one where fundamental computations are carried out by spontaneous spikes that predict what will happen in the world, helping us to perceive, decide, and react quickly enough for our survival. Traversing neuroscience’s expansive terrain, The Spike follows a single electrical response to illuminate how our extraordinary brains work.

Computational Cognitive Neuroscience

Computational Cognitive Neuroscience
Author :
Publisher : Independently Published
Total Pages : 188
Release :
ISBN-10 : 9798633570106
ISBN-13 :
Rating : 4/5 (06 Downloads)

Synopsis Computational Cognitive Neuroscience by : Yuko Munakata

Introduction to computer modeling of the brain, to understand how people think. Networks of interacting neurons produce complex emergent behavior including perception, attention, motor control, learning, memory, language, and executive functions (motivation, decision making, planning, etc).

Computational Psychiatry

Computational Psychiatry
Author :
Publisher : MIT Press
Total Pages : 425
Release :
ISBN-10 : 9780262035422
ISBN-13 : 0262035421
Rating : 4/5 (22 Downloads)

Synopsis Computational Psychiatry by : A. David Redish

Psychiatrists and neuroscientists discuss the potential of computational approaches to address problems in psychiatry including diagnosis, treatment, and integration with neurobiology. Modern psychiatry is at a crossroads, as it attempts to balance neurological analysis with psychological assessment. Computational neuroscience offers a new lens through which to view such thorny issues as diagnosis, treatment, and integration with neurobiology. In this volume, psychiatrists and theoretical and computational neuroscientists consider the potential of computational approaches to psychiatric issues. This unique collaboration yields surprising results, innovative synergies, and novel open questions. The contributors consider mechanisms of psychiatric disorders, the use of computation and imaging to model psychiatric disorders, ways that computation can inform psychiatric nosology, and specific applications of the computational approach. Contributors Susanne E. Ahmari, Huda Akil, Deanna M. Barch, Matthew Botvinick, Michael Breakspear, Cameron S. Carter, Matthew V. Chafee, Sophie Denève, Daniel Durstewitz, Michael B. First, Shelly B. Flagel, Michael J. Frank, Karl J. Friston, Joshua A. Gordon, Katia M. Harlé, Crane Huang, Quentin J. M. Huys, Peter W. Kalivas, John H. Krystal, Zeb Kurth-Nelson, Angus W. MacDonald III, Tiago V. Maia, Robert C. Malenka, Sanjay J. Mathew, Christoph Mathys, P. Read Montague, Rosalyn Moran, Theoden I. Netoff, Yael Niv, John P. O'Doherty, Wolfgang M. Pauli, Martin P. Paulus, Frederike Petzschner, Daniel S. Pine, A. David Redish, Kerry Ressler, Katharina Schmack, Jordan W. Smoller, Klaas Enno Stephan, Anita Thapar, Heike Tost, Nelson Totah, Jennifer L. Zick