Teaching Learning Based Optimization Algorithm

Teaching Learning Based Optimization Algorithm
Author :
Publisher : Springer
Total Pages : 291
Release :
ISBN-10 : 9783319227320
ISBN-13 : 3319227327
Rating : 4/5 (20 Downloads)

Synopsis Teaching Learning Based Optimization Algorithm by : R. Venkata Rao

Describing a new optimization algorithm, the “Teaching-Learning-Based Optimization (TLBO),” in a clear and lucid style, this book maximizes reader insights into how the TLBO algorithm can be used to solve continuous and discrete optimization problems involving single or multiple objectives. As the algorithm operates on the principle of teaching and learning, where teachers influence the quality of learners’ results, the elitist version of TLBO algorithm (ETLBO) is described along with applications of the TLBO algorithm in the fields of electrical engineering, mechanical design, thermal engineering, manufacturing engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics and biotechnology. The book offers a valuable resource for scientists, engineers and practitioners involved in the development and usage of advanced optimization algorithms.

Metaheuristics: Outlines, MATLAB Codes and Examples

Metaheuristics: Outlines, MATLAB Codes and Examples
Author :
Publisher : Springer
Total Pages : 192
Release :
ISBN-10 : 9783030040673
ISBN-13 : 3030040674
Rating : 4/5 (73 Downloads)

Synopsis Metaheuristics: Outlines, MATLAB Codes and Examples by : Ali Kaveh

The book presents eight well-known and often used algorithms besides nine newly developed algorithms by the first author and his students in a practical implementation framework. Matlab codes and some benchmark structural optimization problems are provided. The aim is to provide an efficient context for experienced researchers or readers not familiar with theory, applications and computational developments of the considered metaheuristics. The information will also be of interest to readers interested in application of metaheuristics for hard optimization, comparing conceptually different metaheuristics and designing new metaheuristics.

Advanced Optimization by Nature-Inspired Algorithms

Advanced Optimization by Nature-Inspired Algorithms
Author :
Publisher : Springer
Total Pages : 166
Release :
ISBN-10 : 9789811052217
ISBN-13 : 9811052212
Rating : 4/5 (17 Downloads)

Synopsis Advanced Optimization by Nature-Inspired Algorithms by : Omid Bozorg-Haddad

This book, compiles, presents, and explains the most important meta-heuristic and evolutionary optimization algorithms whose successful performance has been proven in different fields of engineering, and it includes application of these algorithms to important engineering optimization problems. In addition, this book guides readers to studies that have implemented these algorithms by providing a literature review on developments and applications of each algorithm. This book is intended for students, but can be used by researchers and professionals in the area of engineering optimization.

Evolutionary Optimization Algorithms

Evolutionary Optimization Algorithms
Author :
Publisher : John Wiley & Sons
Total Pages : 776
Release :
ISBN-10 : 9781118659502
ISBN-13 : 1118659503
Rating : 4/5 (02 Downloads)

Synopsis Evolutionary Optimization Algorithms by : Dan Simon

A clear and lucid bottom-up approach to the basic principles of evolutionary algorithms Evolutionary algorithms (EAs) are a type of artificial intelligence. EAs are motivated by optimization processes that we observe in nature, such as natural selection, species migration, bird swarms, human culture, and ant colonies. This book discusses the theory, history, mathematics, and programming of evolutionary optimization algorithms. Featured algorithms include genetic algorithms, genetic programming, ant colony optimization, particle swarm optimization, differential evolution, biogeography-based optimization, and many others. Evolutionary Optimization Algorithms: Provides a straightforward, bottom-up approach that assists the reader in obtaining a clear but theoretically rigorous understanding of evolutionary algorithms, with an emphasis on implementation Gives a careful treatment of recently developed EAs including opposition-based learning, artificial fish swarms, bacterial foraging, and many others and discusses their similarities and differences from more well-established EAs Includes chapter-end problems plus a solutions manual available online for instructors Offers simple examples that provide the reader with an intuitive understanding of the theory Features source code for the examples available on the author's website Provides advanced mathematical techniques for analyzing EAs, including Markov modeling and dynamic system modeling Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence is an ideal text for advanced undergraduate students, graduate students, and professionals involved in engineering and computer science.

Intelligent Computing Theories and Application

Intelligent Computing Theories and Application
Author :
Publisher : Springer Nature
Total Pages : 913
Release :
ISBN-10 : 9783030845223
ISBN-13 : 3030845222
Rating : 4/5 (23 Downloads)

Synopsis Intelligent Computing Theories and Application by : De-Shuang Huang

This two-volume set of LNCS 12836 and LNCS 12837 constitutes - in conjunction with the volume LNAI 12838 - the refereed proceedings of the 17th International Conference on Intelligent Computing, ICIC 2021, held in Shenzhen, China in August 2021. The 192 full papers of the three proceedings volumes were carefully reviewed and selected from 458 submissions. The ICIC theme unifies the picture of contemporary intelligent computing techniques as an integral concept that highlights the trends in advanced computational intelligence and bridges theoretical research with applications. The theme for this conference is “Advanced Intelligent Computing Methodologies and Applications.” The papers are organized in the following subsections: Evolutionary Computation and Learning, Image and signal Processing, Information Security, Neural Networks, Pattern Recognition Swarm Intelligence and Optimization, and Virtual Reality and Human-Computer Interaction.

Applied Intelligent Decision Making in Machine Learning

Applied Intelligent Decision Making in Machine Learning
Author :
Publisher : CRC Press
Total Pages : 263
Release :
ISBN-10 : 9781000208542
ISBN-13 : 1000208540
Rating : 4/5 (42 Downloads)

Synopsis Applied Intelligent Decision Making in Machine Learning by : Himansu Das

The objective of this edited book is to share the outcomes from various research domains to develop efficient, adaptive, and intelligent models to handle the challenges related to decision making. It incorporates the advances in machine intelligent techniques such as data streaming, classification, clustering, pattern matching, feature selection, and deep learning in the decision-making process for several diversified applications such as agriculture, character recognition, landslide susceptibility, recommendation systems, forecasting air quality, healthcare, exchange rate prediction, and image dehazing. It also provides a premier interdisciplinary platform for scientists, researchers, practitioners, and educators to share their thoughts in the context of recent innovations, trends, developments, practical challenges, and advancements in the field of data mining, machine learning, soft computing, and decision science. It also focuses on the usefulness of applied intelligent techniques in the decision-making process in several aspects. To address these objectives, this edited book includes a dozen chapters contributed by authors from around the globe. The authors attempt to solve these complex problems using several intelligent machine-learning techniques. This allows researchers to understand the mechanism needed to harness the decision-making process using machine-learning techniques for their own respective endeavors.

Evolutionary Optimization Algorithms

Evolutionary Optimization Algorithms
Author :
Publisher : CRC Press
Total Pages : 274
Release :
ISBN-10 : 9781000462142
ISBN-13 : 1000462145
Rating : 4/5 (42 Downloads)

Synopsis Evolutionary Optimization Algorithms by : Altaf Q. H. Badar

This comprehensive reference text discusses evolutionary optimization techniques, to find optimal solutions for single and multi-objective problems. The text presents each evolutionary optimization algorithm along with its history and other working equations. It also discusses variants and hybrids of optimization techniques. The text presents step-by-step solution to a problem and includes software’s like MATLAB and Python for solving optimization problems. It covers important optimization algorithms including single objective optimization, multi objective optimization, Heuristic optimization techniques, shuffled frog leaping algorithm, bacteria foraging algorithm and firefly algorithm. Aimed at senior undergraduate and graduate students in the field of electrical engineering, electronics engineering, mechanical engineering, and computer science and engineering, this text: Provides step-by-step solution for each evolutionary optimization algorithm. Provides flowcharts and graphics for better understanding of optimization techniques. Discusses popular optimization techniques include particle swarm optimization and genetic algorithm. Presents every optimization technique along with the history and working equations. Includes latest software like Python and MATLAB.

Handbook of Research on Predictive Modeling and Optimization Methods in Science and Engineering

Handbook of Research on Predictive Modeling and Optimization Methods in Science and Engineering
Author :
Publisher : IGI Global
Total Pages : 644
Release :
ISBN-10 : 9781522547679
ISBN-13 : 1522547673
Rating : 4/5 (79 Downloads)

Synopsis Handbook of Research on Predictive Modeling and Optimization Methods in Science and Engineering by : Kim, Dookie

The disciplines of science and engineering rely heavily on the forecasting of prospective constraints for concepts that have not yet been proven to exist, especially in areas such as artificial intelligence. Obtaining quality solutions to the problems presented becomes increasingly difficult due to the number of steps required to sift through the possible solutions, and the ability to solve such problems relies on the recognition of patterns and the categorization of data into specific sets. Predictive modeling and optimization methods allow unknown events to be categorized based on statistics and classifiers input by researchers. The Handbook of Research on Predictive Modeling and Optimization Methods in Science and Engineering is a critical reference source that provides comprehensive information on the use of optimization techniques and predictive models to solve real-life engineering and science problems. Through discussions on techniques such as robust design optimization, water level prediction, and the prediction of human actions, this publication identifies solutions to developing problems and new solutions for existing problems, making this publication a valuable resource for engineers, researchers, graduate students, and other professionals.

Mechanical Design Optimization Using Advanced Optimization Techniques

Mechanical Design Optimization Using Advanced Optimization Techniques
Author :
Publisher : Springer Science & Business Media
Total Pages : 323
Release :
ISBN-10 : 9781447127482
ISBN-13 : 144712748X
Rating : 4/5 (82 Downloads)

Synopsis Mechanical Design Optimization Using Advanced Optimization Techniques by : R. Venkata Rao

Mechanical design includes an optimization process in which designers always consider objectives such as strength, deflection, weight, wear, corrosion, etc. depending on the requirements. However, design optimization for a complete mechanical assembly leads to a complicated objective function with a large number of design variables. It is a good practice to apply optimization techniques for individual components or intermediate assemblies than a complete assembly. Analytical or numerical methods for calculating the extreme values of a function may perform well in many practical cases, but may fail in more complex design situations. In real design problems, the number of design parameters can be very large and their influence on the value to be optimized (the goal function) can be very complicated, having nonlinear character. In these complex cases, advanced optimization algorithms offer solutions to the problems, because they find a solution near to the global optimum within reasonable time and computational costs. Mechanical Design Optimization Using Advanced Optimization Techniques presents a comprehensive review on latest research and development trends for design optimization of mechanical elements and devices. Using examples of various mechanical elements and devices, the possibilities for design optimization with advanced optimization techniques are demonstrated. Basic and advanced concepts of traditional and advanced optimization techniques are presented, along with real case studies, results of applications of the proposed techniques, and the best optimization strategies to achieve best performance are highlighted. Furthermore, a novel advanced optimization method named teaching-learning-based optimization (TLBO) is presented in this book and this method shows better performance with less computational effort for the large scale problems. Mechanical Design Optimization Using Advanced Optimization Techniques is intended for designers, practitioners, managers, institutes involved in design related projects, applied research workers, academics, and graduate students in mechanical and industrial engineering and will be useful to the industrial product designers for realizing a product as it presents new models and optimization techniques to make tasks easier, logical, efficient and effective. .

Ant Colony Optimization

Ant Colony Optimization
Author :
Publisher : MIT Press
Total Pages : 324
Release :
ISBN-10 : 0262042193
ISBN-13 : 9780262042192
Rating : 4/5 (93 Downloads)

Synopsis Ant Colony Optimization by : Marco Dorigo

An overview of the rapidly growing field of ant colony optimization that describes theoretical findings, the major algorithms, and current applications. The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic technique based on ant behavior. This book presents an overview of this rapidly growing field, from its theoretical inception to practical applications, including descriptions of many available ACO algorithms and their uses. The book first describes the translation of observed ant behavior into working optimization algorithms. The ant colony metaheuristic is then introduced and viewed in the general context of combinatorial optimization. This is followed by a detailed description and guide to all major ACO algorithms and a report on current theoretical findings. The book surveys ACO applications now in use, including routing, assignment, scheduling, subset, machine learning, and bioinformatics problems. AntNet, an ACO algorithm designed for the network routing problem, is described in detail. The authors conclude by summarizing the progress in the field and outlining future research directions. Each chapter ends with bibliographic material, bullet points setting out important ideas covered in the chapter, and exercises. Ant Colony Optimization will be of interest to academic and industry researchers, graduate students, and practitioners who wish to learn how to implement ACO algorithms.