Spectral Theory Of Infinite Area Hyperbolic Surfaces
Download Spectral Theory Of Infinite Area Hyperbolic Surfaces full books in PDF, epub, and Kindle. Read online free Spectral Theory Of Infinite Area Hyperbolic Surfaces ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: David Borthwick |
Publisher |
: Birkhäuser |
Total Pages |
: 471 |
Release |
: 2016-07-12 |
ISBN-10 |
: 9783319338774 |
ISBN-13 |
: 3319338773 |
Rating |
: 4/5 (74 Downloads) |
Synopsis Spectral Theory of Infinite-Area Hyperbolic Surfaces by : David Borthwick
This text introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of the most recent developments in the field. For the second edition the context has been extended to general surfaces with hyperbolic ends, which provides a natural setting for development of the spectral theory while still keeping technical difficulties to a minimum. All of the material from the first edition is included and updated, and new sections have been added. Topics covered include an introduction to the geometry of hyperbolic surfaces, analysis of the resolvent of the Laplacian, scattering theory, resonances and scattering poles, the Selberg zeta function, the Poisson formula, distribution of resonances, the inverse scattering problem, Patterson-Sullivan theory, and the dynamical approach to the zeta function. The new sections cover the latest developments in the field, including the spectral gap, resonance asymptotics near the critical line, and sharp geometric constants for resonance bounds. A new chapter introduces recently developed techniques for resonance calculation that illuminate the existing results and conjectures on resonance distribution. The spectral theory of hyperbolic surfaces is a point of intersection for a great variety of areas, including quantum physics, discrete groups, differential geometry, number theory, complex analysis, and ergodic theory. This book will serve as a valuable resource for graduate students and researchers from these and other related fields. Review of the first edition: "The exposition is very clear and thorough, and essentially self-contained; the proofs are detailed...The book gathers together some material which is not always easily available in the literature...To conclude, the book is certainly at a level accessible to graduate students and researchers from a rather large range of fields. Clearly, the reader...would certainly benefit greatly from it." (Colin Guillarmou, Mathematical Reviews, Issue 2008 h)
Author |
: Fritz Gesztesy |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 528 |
Release |
: 2007 |
ISBN-10 |
: 9780821842485 |
ISBN-13 |
: 082184248X |
Rating |
: 4/5 (85 Downloads) |
Synopsis Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday by : Fritz Gesztesy
This Festschrift had its origins in a conference called SimonFest held at Caltech, March 27-31, 2006, to honor Barry Simon's 60th birthday. It is not a proceedings volume in the usual sense since the emphasis of the majority of the contributions is on reviews of the state of the art of certain fields, with particular focus on recent developments and open problems. The bulk of the articles in this Festschrift are of this survey form, and a few review Simon's contributions to aparticular area. Part 1 contains surveys in the areas of Quantum Field Theory, Statistical Mechanics, Nonrelativistic Two-Body and $N$-Body Quantum Systems, Resonances, Quantum Mechanics with Electric and Magnetic Fields, and the Semiclassical Limit. Part 2 contains surveys in the areas of Random andErgodic Schrodinger Operators, Singular Continuous Spectrum, Orthogonal Polynomials, and Inverse Spectral Theory. In several cases, this collection of surveys portrays both the history of a subject and its current state of the art. A substantial part of the contributions to this Festschrift are survey articles on the state of the art of certain areas with special emphasis on open problems. This will benefit graduate students as well as researchers who want to get a quick, yet comprehensiveintroduction into an area covered in this volume.
Author |
: Alex Barnett |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 354 |
Release |
: 2012 |
ISBN-10 |
: 9780821853191 |
ISBN-13 |
: 0821853198 |
Rating |
: 4/5 (91 Downloads) |
Synopsis Spectral Geometry by : Alex Barnett
This volume contains the proceedings of the International Conference on Spectral Geometry, held July 19-23, 2010, at Dartmouth College, Dartmouth, New Hampshire. Eigenvalue problems involving the Laplace operator on manifolds have proven to be a consistently fertile area of geometric analysis with deep connections to number theory, physics, and applied mathematics. Key questions include the measures to which eigenfunctions of the Laplacian on a Riemannian manifold condense in the limit of large eigenvalue, and the extent to which the eigenvalues and eigenfunctions of a manifold encode its geometry. In this volume, research and expository articles, including those of the plenary speakers Peter Sarnak and Victor Guillemin, address the flurry of recent progress in such areas as quantum unique ergodicity, isospectrality, semiclassical measures, the geometry of nodal lines of eigenfunctions, methods of numerical computation, and spectra of quantum graphs. This volume also contains mini-courses on spectral theory for hyperbolic surfaces, semiclassical analysis, and orbifold spectral geometry that prepared the participants, especially graduate students and young researchers, for conference lectures.
Author |
: David Borthwick |
Publisher |
: Springer Nature |
Total Pages |
: 339 |
Release |
: 2020-03-12 |
ISBN-10 |
: 9783030380021 |
ISBN-13 |
: 3030380025 |
Rating |
: 4/5 (21 Downloads) |
Synopsis Spectral Theory by : David Borthwick
This textbook offers a concise introduction to spectral theory, designed for newcomers to functional analysis. Curating the content carefully, the author builds to a proof of the spectral theorem in the early part of the book. Subsequent chapters illustrate a variety of application areas, exploring key examples in detail. Readers looking to delve further into specialized topics will find ample references to classic and recent literature. Beginning with a brief introduction to functional analysis, the text focuses on unbounded operators and separable Hilbert spaces as the essential tools needed for the subsequent theory. A thorough discussion of the concepts of spectrum and resolvent follows, leading to a complete proof of the spectral theorem for unbounded self-adjoint operators. Applications of spectral theory to differential operators comprise the remaining four chapters. These chapters introduce the Dirichlet Laplacian operator, Schrödinger operators, operators on graphs, and the spectral theory of Riemannian manifolds. Spectral Theory offers a uniquely accessible introduction to ideas that invite further study in any number of different directions. A background in real and complex analysis is assumed; the author presents the requisite tools from functional analysis within the text. This introductory treatment would suit a functional analysis course intended as a pathway to linear PDE theory. Independent later chapters allow for flexibility in selecting applications to suit specific interests within a one-semester course.
Author |
: Michael Levitin |
Publisher |
: American Mathematical Society |
Total Pages |
: 346 |
Release |
: 2023-11-30 |
ISBN-10 |
: 9781470475253 |
ISBN-13 |
: 1470475251 |
Rating |
: 4/5 (53 Downloads) |
Synopsis Topics in Spectral Geometry by : Michael Levitin
It is remarkable that various distinct physical phenomena, such as wave propagation, heat diffusion, electron movement in quantum mechanics, oscillations of fluid in a container, can be described using the same differential operator, the Laplacian. Spectral data (i.e., eigenvalues and eigenfunctions) of the Laplacian depend in a subtle way on the geometry of the underlying object, e.g., a Euclidean domain or a Riemannian manifold, on which the operator is defined. This dependence, or, rather, the interplay between the geometry and the spectrum, is the main subject of spectral geometry. Its roots can be traced to Ernst Chladni's experiments with vibrating plates, Lord Rayleigh's theory of sound, and Mark Kac's celebrated question “Can one hear the shape of a drum?” In the second half of the twentieth century spectral geometry emerged as a separate branch of geometric analysis. Nowadays it is a rapidly developing area of mathematics, with close connections to other fields, such as differential geometry, mathematical physics, partial differential equations, number theory, dynamical systems, and numerical analysis. This book can be used for a graduate or an advanced undergraduate course on spectral geometry, starting from the basics but at the same time covering some of the exciting recent developments which can be explained without too many prerequisites.
Author |
: Joel S. Feldman |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 314 |
Release |
: 1995 |
ISBN-10 |
: 9780821803660 |
ISBN-13 |
: 0821803662 |
Rating |
: 4/5 (60 Downloads) |
Synopsis Mathematical Quantum Theory II: Schrodinger Operators by : Joel S. Feldman
The articles in this collection constitute the proceedings of the Canadian Mathematical Society Annual Seminar on Mathematical Quantum Theory, held in Vancouver in August 1993. The meeting was run as a research-level summer school concentrating on two related areas of contemporary mathematical physics. The first area, quantum field theory and many-body theory, is covered in volume 1 of these proceedings. The second area, treated in the present volume, is Schrödinger operators. The meeting featured a series of four-hour mini-courses, designed to introduce students to the state of the art in particular areas, and thirty hour-long expository lectures. With contributions from some of the top experts in the field, this book is an important resource for those interested in activity at the frontiers of mathematical quantum theory.
Author |
: Roelof Bruggeman |
Publisher |
: American Mathematical Society |
Total Pages |
: 186 |
Release |
: 2023-07-31 |
ISBN-10 |
: 9781470465452 |
ISBN-13 |
: 1470465450 |
Rating |
: 4/5 (52 Downloads) |
Synopsis Eigenfunctions of Transfer Operators and Automorphic Forms for Hecke Triangle Groups of Infinite Covolume by : Roelof Bruggeman
View the abstract.
Author |
: Plamen Stefanov |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 322 |
Release |
: 2014-05-05 |
ISBN-10 |
: 9781470410797 |
ISBN-13 |
: 1470410796 |
Rating |
: 4/5 (97 Downloads) |
Synopsis Inverse Problems and Applications by : Plamen Stefanov
This volume contains the proceedings of two conferences on Inverse Problems and Applications, held in 2012, to celebrate the work of Gunther Uhlmann. The first conference was held at the University of California, Irvine, from June 18-22, 2012, and the second was held at Zhejiang University, Hangzhou, China, from September 17-21, 2012. The topics covered include inverse problems in medical imaging, scattering theory, geometry and image processing, and the mathematical theory of cloaking, as well as methods related to inverse problems.
Author |
: Jan Janas |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 180 |
Release |
: 2011-03-29 |
ISBN-10 |
: 9783764399948 |
ISBN-13 |
: 3764399945 |
Rating |
: 4/5 (48 Downloads) |
Synopsis Spectral Theory and Analysis by : Jan Janas
This volume contains the proceedings of the OTAMP 2008 (Operator Theory, Analysis and Mathematical Physics) conference held at the Mathematical Research and Conference Center in Bedlewo near Poznan. It is composed of original research articles describing important results presented at the conference, some with extended review sections, as well as presentations by young researchers. Special sessions were devoted to random and quasi-periodic differential operators, orthogonal polynomials, Jacobi and CMV matrices, and quantum graphs. This volume also reflects new trends in spectral theory, where much emphasis is given to operators with magnetic fields and non-self-adjoint problems. The book is geared towards scientists from advanced undergraduate students to researchers interested in the recent development on the borderline between operator theory and mathematical physics, especially spectral theory for Schrödinger operators and Jacobi matrices.
Author |
: Ali Taheri |
Publisher |
: OUP Oxford |
Total Pages |
: 523 |
Release |
: 2015-07-30 |
ISBN-10 |
: 9780191047824 |
ISBN-13 |
: 0191047821 |
Rating |
: 4/5 (24 Downloads) |
Synopsis Function Spaces and Partial Differential Equations by : Ali Taheri
This is a book written primarily for graduate students and early researchers in the fields of Analysis and Partial Differential Equations (PDEs). Coverage of the material is essentially self-contained, extensive and novel with great attention to details and rigour. The strength of the book primarily lies in its clear and detailed explanations, scope and coverage, highlighting and presenting deep and profound inter-connections between different related and seemingly unrelated disciplines within classical and modern mathematics and above all the extensive collection of examples, worked-out and hinted exercises. There are well over 700 exercises of varying level leading the reader from the basics to the most advanced levels and frontiers of research. The book can be used either for independent study or for a year-long graduate level course. In fact it has its origin in a year-long graduate course taught by the author in Oxford in 2004-5 and various parts of it in other institutions later on. A good number of distinguished researchers and faculty in mathematics worldwide have started their research career from the course that formed the basis for this book.