Spectral Geometry

Spectral Geometry
Author :
Publisher : Springer
Total Pages : 284
Release :
ISBN-10 : 9783540409588
ISBN-13 : 3540409580
Rating : 4/5 (88 Downloads)

Synopsis Spectral Geometry by : Pierre H. Berard

Spectral Geometry of Shapes

Spectral Geometry of Shapes
Author :
Publisher : Academic Press
Total Pages : 152
Release :
ISBN-10 : 9780128138427
ISBN-13 : 0128138424
Rating : 4/5 (27 Downloads)

Synopsis Spectral Geometry of Shapes by : Jing Hua

Spectral Geometry of Shapes presents unique shape analysis approaches based on shape spectrum in differential geometry. It provides insights on how to develop geometry-based methods for 3D shape analysis. The book is an ideal learning resource for graduate students and researchers in computer science, computer engineering and applied mathematics who have an interest in 3D shape analysis, shape motion analysis, image analysis, medical image analysis, computer vision and computer graphics. Due to the rapid advancement of 3D acquisition technologies there has been a big increase in 3D shape data that requires a variety of shape analysis methods, hence the need for this comprehensive resource.

Spectral Theory and Analytic Geometry over Non-Archimedean Fields

Spectral Theory and Analytic Geometry over Non-Archimedean Fields
Author :
Publisher : American Mathematical Soc.
Total Pages : 181
Release :
ISBN-10 : 9780821890202
ISBN-13 : 0821890204
Rating : 4/5 (02 Downloads)

Synopsis Spectral Theory and Analytic Geometry over Non-Archimedean Fields by : Vladimir G. Berkovich

The purpose of this book is to introduce a new notion of analytic space over a non-Archimedean field. Despite the total disconnectedness of the ground field, these analytic spaces have the usual topological properties of a complex analytic space, such as local compactness and local arcwise connectedness. This makes it possible to apply the usual notions of homotopy and singular homology. The book includes a homotopic characterization of the analytic spaces associated with certain classes of algebraic varieties and an interpretation of Bruhat-Tits buildings in terms of these analytic spaces. The author also studies the connection with the earlier notion of a rigid analytic space. Geometrical considerations are used to obtain some applications, and the analytic spaces are used to construct the foundations of a non-Archimedean spectral theory of bounded linear operators. This book requires a background at the level of basic graduate courses in algebra and topology, as well as some familiarity with algebraic geometry. It would be of interest to research mathematicians and graduate students working in algebraic geometry, number theory, and -adic analysis.

Spectral Theory in Riemannian Geometry

Spectral Theory in Riemannian Geometry
Author :
Publisher : Erich Schmidt Verlag GmbH & Co. KG
Total Pages : 204
Release :
ISBN-10 : 3037191511
ISBN-13 : 9783037191514
Rating : 4/5 (11 Downloads)

Synopsis Spectral Theory in Riemannian Geometry by : Olivier Lablée

Spectral theory is a diverse area of mathematics that derives its motivations, goals, and impetus from several sources. In particular, the spectral theory of the Laplacian on a compact Riemannian manifold is a central object in differential geometry. From a physical point a view, the Laplacian on a compact Riemannian manifold is a fundamental linear operator which describes numerous propagation phenomena: heat propagation, wave propagation, quantum dynamics, etc. Moreover, the spectrum of the Laplacian contains vast information about the geometry of the manifold. This book gives a self-contained introduction to spectral geometry on compact Riemannian manifolds. Starting with an overview of spectral theory on Hilbert spaces, the book proceeds to a description of the basic notions in Riemannian geometry. Then its makes its way to topics of main interests in spectral geometry. The topics presented include direct and inverse problems. Direct problems are concerned with computing or finding properties on the eigenvalues while the main issue in inverse problems is knowing the spectrum of the Laplacian, can we determine the geometry of the manifold? Addressed to students or young researchers, the present book is a first introduction to spectral theory applied to geometry. For readers interested in pursuing the subject further, this book will provide a basis for understanding principles, concepts, and developments of spectral geometry.

Old and New Aspects in Spectral Geometry

Old and New Aspects in Spectral Geometry
Author :
Publisher : Springer Science & Business Media
Total Pages : 330
Release :
ISBN-10 : 1402000529
ISBN-13 : 9781402000522
Rating : 4/5 (29 Downloads)

Synopsis Old and New Aspects in Spectral Geometry by : M.-E. Craioveanu

It is known that to any Riemannian manifold (M, g ) , with or without boundary, one can associate certain fundamental objects. Among them are the Laplace-Beltrami opera tor and the Hodge-de Rham operators, which are natural [that is, they commute with the isometries of (M,g)], elliptic, self-adjoint second order differential operators acting on the space of real valued smooth functions on M and the spaces of smooth differential forms on M, respectively. If M is closed, the spectrum of each such operator is an infinite divergent sequence of real numbers, each eigenvalue being repeated according to its finite multiplicity. Spectral Geometry is concerned with the spectra of these operators, also the extent to which these spectra determine the geometry of (M, g) and the topology of M. This problem has been translated by several authors (most notably M. Kac). into the col loquial question "Can one hear the shape of a manifold?" because of its analogy with the wave equation. This terminology was inspired from earlier results of H. Weyl. It is known that the above spectra cannot completely determine either the geometry of (M , g) or the topology of M. For instance, there are examples of pairs of closed Riemannian manifolds with the same spectra corresponding to the Laplace-Beltrami operators, but which differ substantially in their geometry and which are even not homotopically equiva lent.

Spectral Geometry

Spectral Geometry
Author :
Publisher : American Mathematical Soc.
Total Pages : 354
Release :
ISBN-10 : 9780821853191
ISBN-13 : 0821853198
Rating : 4/5 (91 Downloads)

Synopsis Spectral Geometry by : Alex Barnett

This volume contains the proceedings of the International Conference on Spectral Geometry, held July 19-23, 2010, at Dartmouth College, Dartmouth, New Hampshire. Eigenvalue problems involving the Laplace operator on manifolds have proven to be a consistently fertile area of geometric analysis with deep connections to number theory, physics, and applied mathematics. Key questions include the measures to which eigenfunctions of the Laplacian on a Riemannian manifold condense in the limit of large eigenvalue, and the extent to which the eigenvalues and eigenfunctions of a manifold encode its geometry. In this volume, research and expository articles, including those of the plenary speakers Peter Sarnak and Victor Guillemin, address the flurry of recent progress in such areas as quantum unique ergodicity, isospectrality, semiclassical measures, the geometry of nodal lines of eigenfunctions, methods of numerical computation, and spectra of quantum graphs. This volume also contains mini-courses on spectral theory for hyperbolic surfaces, semiclassical analysis, and orbifold spectral geometry that prepared the participants, especially graduate students and young researchers, for conference lectures.

Geometry and Spectra of Compact Riemann Surfaces

Geometry and Spectra of Compact Riemann Surfaces
Author :
Publisher : Springer Science & Business Media
Total Pages : 473
Release :
ISBN-10 : 9780817649920
ISBN-13 : 0817649921
Rating : 4/5 (20 Downloads)

Synopsis Geometry and Spectra of Compact Riemann Surfaces by : Peter Buser

This monograph is a self-contained introduction to the geometry of Riemann Surfaces of constant curvature –1 and their length and eigenvalue spectra. It focuses on two subjects: the geometric theory of compact Riemann surfaces of genus greater than one, and the relationship of the Laplace operator with the geometry of such surfaces. Research workers and graduate students interested in compact Riemann surfaces will find here a number of useful tools and insights to apply to their investigations.

Progress in Inverse Spectral Geometry

Progress in Inverse Spectral Geometry
Author :
Publisher : Birkhäuser
Total Pages : 202
Release :
ISBN-10 : 9783034889384
ISBN-13 : 3034889380
Rating : 4/5 (84 Downloads)

Synopsis Progress in Inverse Spectral Geometry by : Stig I. Andersson

Most polynomial growth on every half-space Re (z) ::::: c. Moreover, Op(t) depends holomorphically on t for Re t> O. General references for much of the material on the derivation of spectral functions, asymptotic expansions and analytic properties of spectral functions are [A-P-S] and [Sh], especially Chapter 2. To study the spectral functions and their relation to the geometry and topology of X, one could, for example, take the natural associated parabolic problem as a starting point. That is, consider the 'heat equation': (%t + p) u(x, t) = 0 { u(x, O) = Uo(x), tP which is solved by means of the (heat) semi group V(t) = e- ; namely, u(·, t) = V(t)uoU· Assuming that V(t) is of trace class (which is guaranteed, for instance, if P has a positive principal symbol), it has a Schwartz kernel K E COO(X x X x Rt, E* ®E), locally given by 00 K(x, y; t) = L>-IAk(~k ® 'Pk)(X, y), k=O for a complete set of orthonormal eigensections 'Pk E COO(E). Taking the trace, we then obtain: 00 tA Op(t) = trace(V(t)) = 2::>- k. k=O Now, using, e. g., the Dunford calculus formula (where C is a suitable curve around a(P)) as a starting point and the standard for malism of pseudodifferential operators, one easily derives asymptotic expansions for the spectral functions, in this case for Op.

Fractal Geometry, Complex Dimensions and Zeta Functions

Fractal Geometry, Complex Dimensions and Zeta Functions
Author :
Publisher : Springer Science & Business Media
Total Pages : 583
Release :
ISBN-10 : 9781461421764
ISBN-13 : 1461421764
Rating : 4/5 (64 Downloads)

Synopsis Fractal Geometry, Complex Dimensions and Zeta Functions by : Michel L. Lapidus

Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Throughout Geometry, Complex Dimensions and Zeta Functions, Second Edition, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.

Asymptotic Formulae in Spectral Geometry

Asymptotic Formulae in Spectral Geometry
Author :
Publisher : CRC Press
Total Pages : 315
Release :
ISBN-10 : 9781135440749
ISBN-13 : 1135440743
Rating : 4/5 (49 Downloads)

Synopsis Asymptotic Formulae in Spectral Geometry by : Peter B. Gilkey

A great deal of progress has been made recently in the field of asymptotic formulas that arise in the theory of Dirac and Laplace type operators. Asymptotic Formulae in Spectral Geometry collects these results and computations into one book. Written by a leading pioneer in the field, it focuses on the functorial and special cases methods of computing asymptotic heat trace and heat content coefficients in the heat equation. It incorporates the work of many authors into the presentation, and includes a complete bibliography that serves as a roadmap to the literature on the subject. Geometers, mathematical physicists, and analysts alike will undoubtedly find this book to be the definitive book on the subject