Shintani Zeta Functions

Shintani Zeta Functions
Author :
Publisher : Cambridge University Press
Total Pages : 355
Release :
ISBN-10 : 9780521448048
ISBN-13 : 0521448042
Rating : 4/5 (48 Downloads)

Synopsis Shintani Zeta Functions by : Akihiko Yukie

This is amongst the first books on the theory of prehomogeneous vector spaces, and represents the author's deep study of the subject.

Automorphic Forms and Zeta Functions

Automorphic Forms and Zeta Functions
Author :
Publisher : World Scientific
Total Pages : 400
Release :
ISBN-10 : 9789812566324
ISBN-13 : 9812566325
Rating : 4/5 (24 Downloads)

Synopsis Automorphic Forms and Zeta Functions by : Siegfried B”cherer

This volume contains a valuable collection of articles presented at a conference on Automorphic Forms and Zeta Functions in memory of Tsuneo Arakawa, an eminent researcher in modular forms in several variables and zeta functions. The book begins with a review of his works, followed by 16 articles by experts in the fields including H Aoki, R Berndt, K Hashimoto, S Hayashida, Y Hironaka, H Katsurada, W Kohnen, A Krieg, A Murase, H Narita, T Oda, B Roberts, R Schmidt, R Schulze-Pillot, N Skoruppa, T Sugano, and D Zagier. A variety of topics in the theory of modular forms and zeta functions are covered: Theta series and the basis problems, Jacobi forms, automorphic forms on Sp(1, q), double zeta functions, special values of zeta and L-functions, many of which are closely related to Arakawa's works. This collection of papers illustrates Arakawa's contributions and the current trends in modular forms in several variables and related zeta functions. Contents: Tsuneo Arakawa and His Works; Estimate of the Dimensions of Hilbert Modular Forms by Means of Differential Operator (H Aoki); Marsden-Weinstein Reduction, Orbits and Representations of the Jacobi Group (R Berndt); On Eisenstein Series of Degree Two for Squarefree Levels and the Genus Version of the Basis Problem I (S Bocherer); Double Zeta Values and Modular Forms (H Gangl et al.); Type Numbers and Linear Relations of Theta Series for Some General Orders of Quaternion Algebras (K Hashimoto); Skewholomorphic Jacobi Forms of Higher Degree (S Hayashida); A Hermitian Analog of the Schottky Form (M Hentschel & A Krieg); The Siegel Series and Spherical Functions on O(2n)/(O(n) x O(n)) (Y Hironaka & F Sati); Koecher-Maa Series for Real Analytic Siegel Eisenstein Series (T Ibukiyama & H Katsurada); A Short History on Investigation of the Special Values of Zeta and L-Functions of Totally Real Number Fields (T Ishii & T Oda); Genus Theta Series, Hecke Operators and the Basis Problem for Eisenstein Series (H Katsurada & R Schulze-Pillot); The Quadratic Mean of Automorphic L-Functions (W Kohnen et al.); Inner Product Formula for Kudla Lift (A Murase & T Sugano); On Certain Automorphic Forms of Sp(1,q) (Arakawa's Results and Recent Progress) (H Narita); On Modular Forms for the Paramodular Group (B Roberts & R Schmidt); SL(2,Z)-Invariant Spaces Spanned by Modular Units (N-P Skoruppa & W Eholzer). Readership: Researchers and graduate students in number theory or representation theory as well as in mathematical physics or combinatorics.

Automorphic Forms, Representation Theory and Arithmetic

Automorphic Forms, Representation Theory and Arithmetic
Author :
Publisher : Springer
Total Pages : 355
Release :
ISBN-10 : 3540106979
ISBN-13 : 9783540106975
Rating : 4/5 (79 Downloads)

Synopsis Automorphic Forms, Representation Theory and Arithmetic by : S. Gelbart

International Colloquium an Automorphic Forms, Representation Theory and Arithmetic. Published for the Tata Institute of Fundamental Research, Bombay

An Introduction to the Theory of Local Zeta Functions

An Introduction to the Theory of Local Zeta Functions
Author :
Publisher : American Mathematical Soc.
Total Pages : 246
Release :
ISBN-10 : 9780821829073
ISBN-13 : 0821829076
Rating : 4/5 (73 Downloads)

Synopsis An Introduction to the Theory of Local Zeta Functions by : Jun-ichi Igusa

This book is an introductory presentation to the theory of local zeta functions. Viewed as distributions, and mostly in the archimedean case, local zeta functions are also called complex powers. The volume contains major results on analytic and algebraic properties of complex powers by Atiyah, Bernstein, I. M. Gelfand, S. I. Gelfand, and Sato. Chapters devoted to $p$-adic local zeta functions present Serre's structure theorem, a rationality theorem, and many examples found by the author. The presentation concludes with theorems by Denef and Meuser. Information for our distributors: Titles in this series are co-published with International Press, Cambridge, MA.

Automorphic Forms And Zeta Functions - Proceedings Of The Conference In Memory Of Tsuneo Arakawa

Automorphic Forms And Zeta Functions - Proceedings Of The Conference In Memory Of Tsuneo Arakawa
Author :
Publisher : World Scientific
Total Pages : 400
Release :
ISBN-10 : 9789814478779
ISBN-13 : 9814478776
Rating : 4/5 (79 Downloads)

Synopsis Automorphic Forms And Zeta Functions - Proceedings Of The Conference In Memory Of Tsuneo Arakawa by : Masanobu Kaneko

This volume contains a valuable collection of articles presented at a conference on Automorphic Forms and Zeta Functions in memory of Tsuneo Arakawa, an eminent researcher in modular forms in several variables and zeta functions. The book begins with a review of his works, followed by 16 articles by experts in the fields including H Aoki, R Berndt, K Hashimoto, S Hayashida, Y Hironaka, H Katsurada, W Kohnen, A Krieg, A Murase, H Narita, T Oda, B Roberts, R Schmidt, R Schulze-Pillot, N Skoruppa, T Sugano, and D Zagier. A variety of topics in the theory of modular forms and zeta functions are covered: Theta series and the basis problems, Jacobi forms, automorphic forms on Sp(1, q), double zeta functions, special values of zeta and L-functions, many of which are closely related to Arakawa's works.This collection of papers illustrates Arakawa's contributions and the current trends in modular forms in several variables and related zeta functions.

The Theory of Zeta-Functions of Root Systems

The Theory of Zeta-Functions of Root Systems
Author :
Publisher : Springer Nature
Total Pages : 419
Release :
ISBN-10 : 9789819909100
ISBN-13 : 9819909104
Rating : 4/5 (00 Downloads)

Synopsis The Theory of Zeta-Functions of Root Systems by : Yasushi Komori

The contents of this book was created by the authors as a simultaneous generalization of Witten zeta-functions, Mordell–Tornheim multiple zeta-functions, and Euler–Zagier multiple zeta-functions. Zeta-functions of root systems are defined by certain multiple series, given in terms of root systems. Therefore, they intrinsically have the action of associated Weyl groups. The exposition begins with a brief introduction to the theory of Lie algebras and root systems and then provides the definition of zeta-functions of root systems, explicit examples associated with various simple Lie algebras, meromorphic continuation and recursive analytic structure described by Dynkin diagrams, special values at integer points, functional relations, and the background given by the action of Weyl groups. In particular, an explicit form of Witten’s volume formula is provided. It is shown that various relations among special values of Euler–Zagier multiple zeta-functions—which usually are called multiple zeta values (MZVs) and are quite important in connection with Zagier’s conjecture—are just special cases of various functional relations among zeta-functions of root systems. The authors further provide other applications to the theory of MZVs and also introduce generalizations with Dirichlet characters, and with certain congruence conditions. The book concludes with a brief description of other relevant topics.

Elementary Theory of L-functions and Eisenstein Series

Elementary Theory of L-functions and Eisenstein Series
Author :
Publisher : Cambridge University Press
Total Pages : 404
Release :
ISBN-10 : 0521435692
ISBN-13 : 9780521435697
Rating : 4/5 (92 Downloads)

Synopsis Elementary Theory of L-functions and Eisenstein Series by : Haruzo Hida

The theory of p-adic and classic modular forms, and the study of arithmetic and p-adic L-functions has proved to be a fruitful area of mathematics over the last decade. Professor Hida has given courses on these topics in the USA, Japan, and in France, and in this book provides the reader with an elementary but detailed insight into the theory of L-functions. The presentation is self contained and concise, and the subject is approached using only basic tools from complex analysis and cohomology theory. Graduate students wishing to know more about L-functions will find that this book offers a unique introduction to this fascinating branch of mathematics.

Zeta and Q-Zeta Functions and Associated Series and Integrals

Zeta and Q-Zeta Functions and Associated Series and Integrals
Author :
Publisher : Elsevier
Total Pages : 675
Release :
ISBN-10 : 9780123852182
ISBN-13 : 0123852188
Rating : 4/5 (82 Downloads)

Synopsis Zeta and Q-Zeta Functions and Associated Series and Integrals by : H. M. Srivastava

Zeta and q-Zeta Functions and Associated Series and Integrals is a thoroughly revised, enlarged and updated version of Series Associated with the Zeta and Related Functions. Many of the chapters and sections of the book have been significantly modified or rewritten, and a new chapter on the theory and applications of the basic (or q-) extensions of various special functions is included. This book will be invaluable because it covers not only detailed and systematic presentations of the theory and applications of the various methods and techniques used in dealing with many different classes of series and integrals associated with the Zeta and related functions, but stimulating historical accounts of a large number of problems and well-classified tables of series and integrals. Detailed and systematic presentations of the theory and applications of the various methods and techniques used in dealing with many different classes of series and integrals associated with the Zeta and related functions

Contributions to the Theory of Zeta-Functions

Contributions to the Theory of Zeta-Functions
Author :
Publisher : World Scientific
Total Pages : 316
Release :
ISBN-10 : 9789814449625
ISBN-13 : 9814449628
Rating : 4/5 (25 Downloads)

Synopsis Contributions to the Theory of Zeta-Functions by : Shigeru Kanemitsu

This volume provides a systematic survey of almost all the equivalent assertions to the functional equations - zeta symmetry - which zeta-functions satisfy, thus streamlining previously published results on zeta-functions. The equivalent relations are given in the form of modular relations in Fox H-function series, which at present include all that have been considered as candidates for ingredients of a series. The results are presented in a clear and simple manner for readers to readily apply without much knowledge of zeta-functions. This volume aims to keep a record of the 150-year-old heritage starting from Riemann on zeta-functions, which are ubiquitous in all mathematical sciences, wherever there is a notion of the norm. It provides almost all possible equivalent relations to the zeta-functions without requiring a reader's deep knowledge on their definitions. This can be an ideal reference book for those studying zeta-functions.

Automorphic Forms, Representations and $L$-Functions

Automorphic Forms, Representations and $L$-Functions
Author :
Publisher : American Mathematical Soc.
Total Pages : 394
Release :
ISBN-10 : 9780821814376
ISBN-13 : 0821814370
Rating : 4/5 (76 Downloads)

Synopsis Automorphic Forms, Representations and $L$-Functions by : Armand Borel

Part 2 contains sections on Automorphic representations and $L$-functions, Arithmetical algebraic geometry and $L$-functions