Automorphic Forms And Zeta Functions - Proceedings Of The Conference In Memory Of Tsuneo Arakawa

Automorphic Forms And Zeta Functions - Proceedings Of The Conference In Memory Of Tsuneo Arakawa
Author :
Publisher : World Scientific
Total Pages : 400
Release :
ISBN-10 : 9789814478779
ISBN-13 : 9814478776
Rating : 4/5 (79 Downloads)

Synopsis Automorphic Forms And Zeta Functions - Proceedings Of The Conference In Memory Of Tsuneo Arakawa by : Masanobu Kaneko

This volume contains a valuable collection of articles presented at a conference on Automorphic Forms and Zeta Functions in memory of Tsuneo Arakawa, an eminent researcher in modular forms in several variables and zeta functions. The book begins with a review of his works, followed by 16 articles by experts in the fields including H Aoki, R Berndt, K Hashimoto, S Hayashida, Y Hironaka, H Katsurada, W Kohnen, A Krieg, A Murase, H Narita, T Oda, B Roberts, R Schmidt, R Schulze-Pillot, N Skoruppa, T Sugano, and D Zagier. A variety of topics in the theory of modular forms and zeta functions are covered: Theta series and the basis problems, Jacobi forms, automorphic forms on Sp(1, q), double zeta functions, special values of zeta and L-functions, many of which are closely related to Arakawa's works.This collection of papers illustrates Arakawa's contributions and the current trends in modular forms in several variables and related zeta functions.

Automorphic Forms and Zeta Functions

Automorphic Forms and Zeta Functions
Author :
Publisher : World Scientific
Total Pages : 400
Release :
ISBN-10 : 9789812566324
ISBN-13 : 9812566325
Rating : 4/5 (24 Downloads)

Synopsis Automorphic Forms and Zeta Functions by : Siegfried B”cherer

This volume contains a valuable collection of articles presented at a conference on Automorphic Forms and Zeta Functions in memory of Tsuneo Arakawa, an eminent researcher in modular forms in several variables and zeta functions. The book begins with a review of his works, followed by 16 articles by experts in the fields including H Aoki, R Berndt, K Hashimoto, S Hayashida, Y Hironaka, H Katsurada, W Kohnen, A Krieg, A Murase, H Narita, T Oda, B Roberts, R Schmidt, R Schulze-Pillot, N Skoruppa, T Sugano, and D Zagier. A variety of topics in the theory of modular forms and zeta functions are covered: Theta series and the basis problems, Jacobi forms, automorphic forms on Sp(1, q), double zeta functions, special values of zeta and L-functions, many of which are closely related to Arakawa's works. This collection of papers illustrates Arakawa's contributions and the current trends in modular forms in several variables and related zeta functions. Contents: Tsuneo Arakawa and His Works; Estimate of the Dimensions of Hilbert Modular Forms by Means of Differential Operator (H Aoki); Marsden-Weinstein Reduction, Orbits and Representations of the Jacobi Group (R Berndt); On Eisenstein Series of Degree Two for Squarefree Levels and the Genus Version of the Basis Problem I (S Bocherer); Double Zeta Values and Modular Forms (H Gangl et al.); Type Numbers and Linear Relations of Theta Series for Some General Orders of Quaternion Algebras (K Hashimoto); Skewholomorphic Jacobi Forms of Higher Degree (S Hayashida); A Hermitian Analog of the Schottky Form (M Hentschel & A Krieg); The Siegel Series and Spherical Functions on O(2n)/(O(n) x O(n)) (Y Hironaka & F Sati); Koecher-Maa Series for Real Analytic Siegel Eisenstein Series (T Ibukiyama & H Katsurada); A Short History on Investigation of the Special Values of Zeta and L-Functions of Totally Real Number Fields (T Ishii & T Oda); Genus Theta Series, Hecke Operators and the Basis Problem for Eisenstein Series (H Katsurada & R Schulze-Pillot); The Quadratic Mean of Automorphic L-Functions (W Kohnen et al.); Inner Product Formula for Kudla Lift (A Murase & T Sugano); On Certain Automorphic Forms of Sp(1,q) (Arakawa's Results and Recent Progress) (H Narita); On Modular Forms for the Paramodular Group (B Roberts & R Schmidt); SL(2,Z)-Invariant Spaces Spanned by Modular Units (N-P Skoruppa & W Eholzer). Readership: Researchers and graduate students in number theory or representation theory as well as in mathematical physics or combinatorics.

Geometry and Analysis of Automorphic Forms of Several Variables

Geometry and Analysis of Automorphic Forms of Several Variables
Author :
Publisher : World Scientific
Total Pages : 388
Release :
ISBN-10 : 9789814355605
ISBN-13 : 9814355607
Rating : 4/5 (05 Downloads)

Synopsis Geometry and Analysis of Automorphic Forms of Several Variables by : Yoshinori Hamahata

This volume contains contributions of principal speakers of the symposium on geometry and analysis of automorphic forms of several variables, held in September 2009 at Tokyo, Japan, in honor of Takayuki Oda''s 60th birthday. It presents both research and survey articles in the fields that are the main themes of his work. The volume may serve as a guide to developing areas as well as a resource for researchers who seek a broader view and for students who are beginning to explore automorphic form.

Local Newforms for GSp(4)

Local Newforms for GSp(4)
Author :
Publisher : Springer Science & Business Media
Total Pages : 311
Release :
ISBN-10 : 9783540733232
ISBN-13 : 354073323X
Rating : 4/5 (32 Downloads)

Synopsis Local Newforms for GSp(4) by : Brooks Roberts

Local Newforms for GSp(4) describes a theory of new- and oldforms for representations of GSp(4) over a non-archimedean local field. This theory considers vectors fixed by the paramodular groups, and singles out certain vectors that encode canonical information, such as L-factors and epsilon-factors, through their Hecke and Atkin-Lehner eigenvalues. While there are analogies to the GL(2) case, this theory is novel and unanticipated by the existing framework of conjectures. An appendix includes extensive tables about the results and the representation theory of GSp(4).

The Geometry of Algebraic Cycles

The Geometry of Algebraic Cycles
Author :
Publisher : American Mathematical Soc.
Total Pages : 202
Release :
ISBN-10 : 9780821851913
ISBN-13 : 0821851918
Rating : 4/5 (13 Downloads)

Synopsis The Geometry of Algebraic Cycles by : Reza Akhtar

The subject of algebraic cycles has its roots in the study of divisors, extending as far back as the nineteenth century. Since then, and in particular in recent years, algebraic cycles have made a significant impact on many fields of mathematics, among them number theory, algebraic geometry, and mathematical physics. The present volume contains articles on all of the above aspects of algebraic cycles. It also contains a mixture of both research papers and expository articles, so that it would be of interest to both experts and beginners in the field.

Mathematical Reviews

Mathematical Reviews
Author :
Publisher :
Total Pages : 900
Release :
ISBN-10 : UOM:39015060987123
ISBN-13 :
Rating : 4/5 (23 Downloads)

Synopsis Mathematical Reviews by :

The Theory of Hardy's Z-Function

The Theory of Hardy's Z-Function
Author :
Publisher : Cambridge University Press
Total Pages : 265
Release :
ISBN-10 : 9781107028838
ISBN-13 : 1107028833
Rating : 4/5 (38 Downloads)

Synopsis The Theory of Hardy's Z-Function by : A. Ivić

A comprehensive account of Hardy's Z-function, one of the most important functions of analytic number theory.

Multiple Zeta Functions, Multiple Polylogarithms And Their Special Values

Multiple Zeta Functions, Multiple Polylogarithms And Their Special Values
Author :
Publisher : World Scientific
Total Pages : 618
Release :
ISBN-10 : 9789814689410
ISBN-13 : 9814689416
Rating : 4/5 (10 Downloads)

Synopsis Multiple Zeta Functions, Multiple Polylogarithms And Their Special Values by : Jianqiang Zhao

This is the first introductory book on multiple zeta functions and multiple polylogarithms which are the generalizations of the Riemann zeta function and the classical polylogarithms, respectively, to the multiple variable setting. It contains all the basic concepts and the important properties of these functions and their special values. This book is aimed at graduate students, mathematicians and physicists who are interested in this current active area of research.The book will provide a detailed and comprehensive introduction to these objects, their fascinating properties and interesting relations to other mathematical subjects, and various generalizations such as their q-analogs and their finite versions (by taking partial sums modulo suitable prime powers). Historical notes and exercises are provided at the end of each chapter.