Rudiments of Algebraic Geometry

Rudiments of Algebraic Geometry
Author :
Publisher : Courier Dover Publications
Total Pages : 115
Release :
ISBN-10 : 9780486818061
ISBN-13 : 0486818063
Rating : 4/5 (61 Downloads)

Synopsis Rudiments of Algebraic Geometry by : W.E. Jenner

Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.

Introduction to Algebraic Geometry

Introduction to Algebraic Geometry
Author :
Publisher : Courier Dover Publications
Total Pages : 273
Release :
ISBN-10 : 9780486839806
ISBN-13 : 048683980X
Rating : 4/5 (06 Downloads)

Synopsis Introduction to Algebraic Geometry by : Serge Lang

Author Serge Lang defines algebraic geometry as the study of systems of algebraic equations in several variables and of the structure that one can give to the solutions of such equations. The study can be carried out in four ways: analytical, topological, algebraico-geometric, and arithmetic. This volume offers a rapid, concise, and self-contained introductory approach to the algebraic aspects of the third method, the algebraico-geometric. The treatment assumes only familiarity with elementary algebra up to the level of Galois theory. Starting with an opening chapter on the general theory of places, the author advances to examinations of algebraic varieties, the absolute theory of varieties, and products, projections, and correspondences. Subsequent chapters explore normal varieties, divisors and linear systems, differential forms, the theory of simple points, and algebraic groups, concluding with a focus on the Riemann-Roch theorem. All the theorems of a general nature related to the foundations of the theory of algebraic groups are featured.

Algebraic Geometry

Algebraic Geometry
Author :
Publisher : Springer Science & Business Media
Total Pages : 511
Release :
ISBN-10 : 9781475738490
ISBN-13 : 1475738498
Rating : 4/5 (90 Downloads)

Synopsis Algebraic Geometry by : Robin Hartshorne

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.

Algebra

Algebra
Author :
Publisher : American Mathematical Soc.
Total Pages : 531
Release :
ISBN-10 : 9780821847992
ISBN-13 : 0821847996
Rating : 4/5 (92 Downloads)

Synopsis Algebra by : I. Martin Isaacs

as a student." --Book Jacket.

Linear Geometry

Linear Geometry
Author :
Publisher : Springer Science & Business Media
Total Pages : 208
Release :
ISBN-10 : 9781475741018
ISBN-13 : 1475741014
Rating : 4/5 (18 Downloads)

Synopsis Linear Geometry by : K. W. Gruenberg

This is essentially a book on linear algebra. But the approach is somewhat unusual in that we emphasise throughout the geometric aspect of the subject. The material is suitable for a course on linear algebra for mathe matics majors at North American Universities in their junior or senior year and at British Universities in their second or third year. However, in view of the structure of undergraduate courses in the United States, it is very possible that, at many institutions, the text may be found more suitable at the beginning graduate level. The book has two aims: to provide a basic course in linear algebra up to, and including, modules over a principal ideal domain; and to explain in rigorous language the intuitively familiar concepts of euclidean, affine, and projective geometry and the relations between them. It is increasingly recognised that linear algebra should be approached from a geometric point of VIew. This applies not only to mathematics majors but also to mathematically-oriented natural scientists and engineers.

Rudiments of Mathematics Part 1

Rudiments of Mathematics Part 1
Author :
Publisher : Academic Publishers
Total Pages : 956
Release :
ISBN-10 : 8189781545
ISBN-13 : 9788189781545
Rating : 4/5 (45 Downloads)

Synopsis Rudiments of Mathematics Part 1 by :

Rigid Analytic Geometry and Its Applications

Rigid Analytic Geometry and Its Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 303
Release :
ISBN-10 : 9781461200413
ISBN-13 : 1461200415
Rating : 4/5 (13 Downloads)

Synopsis Rigid Analytic Geometry and Its Applications by : Jean Fresnel

Rigid (analytic) spaces were invented to describe degenerations, reductions, and moduli of algebraic curves and abelian varieties. This work, a revised and greatly expanded new English edition of an earlier French text by the same authors, presents important new developments and applications of the theory of rigid analytic spaces to abelian varieties, "points of rigid spaces," étale cohomology, Drinfeld modular curves, and Monsky-Washnitzer cohomology. The exposition is concise, self-contained, rich in examples and exercises, and will serve as an excellent graduate-level text for the classroom or for self-study.

Lectures on Curves, Surfaces and Projective Varieties

Lectures on Curves, Surfaces and Projective Varieties
Author :
Publisher : European Mathematical Society
Total Pages : 512
Release :
ISBN-10 : 3037190647
ISBN-13 : 9783037190647
Rating : 4/5 (47 Downloads)

Synopsis Lectures on Curves, Surfaces and Projective Varieties by : Mauro Beltrametti

This book offers a wide-ranging introduction to algebraic geometry along classical lines. It consists of lectures on topics in classical algebraic geometry, including the basic properties of projective algebraic varieties, linear systems of hypersurfaces, algebraic curves (with special emphasis on rational curves), linear series on algebraic curves, Cremona transformations, rational surfaces, and notable examples of special varieties like the Segre, Grassmann, and Veronese varieties. An integral part and special feature of the presentation is the inclusion of many exercises, not easy to find in the literature and almost all with complete solutions. The text is aimed at students in the last two years of an undergraduate program in mathematics. It contains some rather advanced topics suitable for specialized courses at the advanced undergraduate or beginning graduate level, as well as interesting topics for a senior thesis. The prerequisites have been deliberately limited to basic elements of projective geometry and abstract algebra. Thus, for example, some knowledge of the geometry of subspaces and properties of fields is assumed. The book will be welcomed by teachers and students of algebraic geometry who are seeking a clear and panoramic path leading from the basic facts about linear subspaces, conics and quadrics to a systematic discussion of classical algebraic varieties and the tools needed to study them. The text provides a solid foundation for approaching more advanced and abstract literature.

Introduction to Homotopy Theory

Introduction to Homotopy Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 352
Release :
ISBN-10 : 9781441973290
ISBN-13 : 144197329X
Rating : 4/5 (90 Downloads)

Synopsis Introduction to Homotopy Theory by : Martin Arkowitz

This is a book in pure mathematics dealing with homotopy theory, one of the main branches of algebraic topology. The principal topics are as follows: Basic Homotopy; H-spaces and co-H-spaces; fibrations and cofibrations; exact sequences of homotopy sets, actions, and coactions; homotopy pushouts and pullbacks; classical theorems, including those of Serre, Hurewicz, Blakers-Massey, and Whitehead; homotopy Sets; homotopy and homology decompositions of spaces and maps; and obstruction theory. The underlying theme of the entire book is the Eckmann-Hilton duality theory. The book can be used as a text for the second semester of an advanced ungraduate or graduate algebraic topology course.

Algorithms in Real Algebraic Geometry

Algorithms in Real Algebraic Geometry
Author :
Publisher : Springer Science & Business Media
Total Pages : 602
Release :
ISBN-10 : 9783662053553
ISBN-13 : 3662053551
Rating : 4/5 (53 Downloads)

Synopsis Algorithms in Real Algebraic Geometry by : Saugata Basu

In this first-ever graduate textbook on the algorithmic aspects of real algebraic geometry, the main ideas and techniques presented form a coherent and rich body of knowledge, linked to many areas of mathematics and computing. Mathematicians already aware of real algebraic geometry will find relevant information about the algorithmic aspects. Researchers in computer science and engineering will find the required mathematical background. This self-contained book is accessible to graduate and undergraduate students.