Introduction To Algebraic Geometry
Download Introduction To Algebraic Geometry full books in PDF, epub, and Kindle. Read online free Introduction To Algebraic Geometry ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Steven Dale Cutkosky |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 498 |
Release |
: 2018-06-01 |
ISBN-10 |
: 9781470435189 |
ISBN-13 |
: 1470435187 |
Rating |
: 4/5 (89 Downloads) |
Synopsis Introduction to Algebraic Geometry by : Steven Dale Cutkosky
This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.
Author |
: Igor Kriz |
Publisher |
: Springer Nature |
Total Pages |
: 481 |
Release |
: 2021-03-13 |
ISBN-10 |
: 9783030626440 |
ISBN-13 |
: 303062644X |
Rating |
: 4/5 (40 Downloads) |
Synopsis Introduction to Algebraic Geometry by : Igor Kriz
The goal of this book is to provide an introduction to algebraic geometry accessible to students. Starting from solutions of polynomial equations, modern tools of the subject soon appear, motivated by how they improve our understanding of geometrical concepts. In many places, analogies and differences with related mathematical areas are explained. The text approaches foundations of algebraic geometry in a complete and self-contained way, also covering the underlying algebra. The last two chapters include a comprehensive treatment of cohomology and discuss some of its applications in algebraic geometry.
Author |
: Robin Hartshorne |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 511 |
Release |
: 2013-06-29 |
ISBN-10 |
: 9781475738490 |
ISBN-13 |
: 1475738498 |
Rating |
: 4/5 (90 Downloads) |
Synopsis Algebraic Geometry by : Robin Hartshorne
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
Author |
: Serge Lang |
Publisher |
: Courier Dover Publications |
Total Pages |
: 273 |
Release |
: 2019-03-20 |
ISBN-10 |
: 9780486839806 |
ISBN-13 |
: 048683980X |
Rating |
: 4/5 (06 Downloads) |
Synopsis Introduction to Algebraic Geometry by : Serge Lang
Author Serge Lang defines algebraic geometry as the study of systems of algebraic equations in several variables and of the structure that one can give to the solutions of such equations. The study can be carried out in four ways: analytical, topological, algebraico-geometric, and arithmetic. This volume offers a rapid, concise, and self-contained introductory approach to the algebraic aspects of the third method, the algebraico-geometric. The treatment assumes only familiarity with elementary algebra up to the level of Galois theory. Starting with an opening chapter on the general theory of places, the author advances to examinations of algebraic varieties, the absolute theory of varieties, and products, projections, and correspondences. Subsequent chapters explore normal varieties, divisors and linear systems, differential forms, the theory of simple points, and algebraic groups, concluding with a focus on the Riemann-Roch theorem. All the theorems of a general nature related to the foundations of the theory of algebraic groups are featured.
Author |
: Brendan Hassett |
Publisher |
: |
Total Pages |
: 252 |
Release |
: 2007 |
ISBN-10 |
: 0511573626 |
ISBN-13 |
: 9780511573620 |
Rating |
: 4/5 (26 Downloads) |
Synopsis Introduction to Algebraic Geometry by : Brendan Hassett
Central concepts most useful for computation; for undergraduate/graduate students in mathematics, researchers in applications.
Author |
: Meinolf Geck |
Publisher |
: Oxford University Press |
Total Pages |
: 321 |
Release |
: 2013-03-14 |
ISBN-10 |
: 9780199676163 |
ISBN-13 |
: 019967616X |
Rating |
: 4/5 (63 Downloads) |
Synopsis An Introduction to Algebraic Geometry and Algebraic Groups by : Meinolf Geck
An accessible text introducing algebraic groups at advanced undergraduate and early graduate level, this book covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups with a BN-pair, Frobenius maps on affine varieties and algebraic groups, zeta functions and Lefschetz numbers for varieties over finite fields.
Author |
: Ernst Kunz |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 253 |
Release |
: 2012-11-06 |
ISBN-10 |
: 9781461459873 |
ISBN-13 |
: 1461459877 |
Rating |
: 4/5 (73 Downloads) |
Synopsis Introduction to Commutative Algebra and Algebraic Geometry by : Ernst Kunz
Originally published in 1985, this classic textbook is an English translation of Einführung in die kommutative Algebra und algebraische Geometrie. As part of the Modern Birkhäuser Classics series, the publisher is proud to make Introduction to Commutative Algebra and Algebraic Geometry available to a wider audience. Aimed at students who have taken a basic course in algebra, the goal of the text is to present important results concerning the representation of algebraic varieties as intersections of the least possible number of hypersurfaces and—a closely related problem—with the most economical generation of ideals in Noetherian rings. Along the way, one encounters many basic concepts of commutative algebra and algebraic geometry and proves many facts which can then serve as a basic stock for a deeper study of these subjects.
Author |
: Daniel Perrin |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 267 |
Release |
: 2007-12-16 |
ISBN-10 |
: 9781848000568 |
ISBN-13 |
: 1848000561 |
Rating |
: 4/5 (68 Downloads) |
Synopsis Algebraic Geometry by : Daniel Perrin
Aimed primarily at graduate students and beginning researchers, this book provides an introduction to algebraic geometry that is particularly suitable for those with no previous contact with the subject; it assumes only the standard background of undergraduate algebra. The book starts with easily-formulated problems with non-trivial solutions and uses these problems to introduce the fundamental tools of modern algebraic geometry: dimension; singularities; sheaves; varieties; and cohomology. A range of exercises is provided for each topic discussed, and a selection of problems and exam papers are collected in an appendix to provide material for further study.
Author |
: Siegfried Bosch |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 508 |
Release |
: 2012-11-15 |
ISBN-10 |
: 9781447148296 |
ISBN-13 |
: 1447148290 |
Rating |
: 4/5 (96 Downloads) |
Synopsis Algebraic Geometry and Commutative Algebra by : Siegfried Bosch
Algebraic geometry is a fascinating branch of mathematics that combines methods from both, algebra and geometry. It transcends the limited scope of pure algebra by means of geometric construction principles. Moreover, Grothendieck’s schemes invented in the late 1950s allowed the application of algebraic-geometric methods in fields that formerly seemed to be far away from geometry, like algebraic number theory. The new techniques paved the way to spectacular progress such as the proof of Fermat’s Last Theorem by Wiles and Taylor. The scheme-theoretic approach to algebraic geometry is explained for non-experts. More advanced readers can use the book to broaden their view on the subject. A separate part deals with the necessary prerequisites from commutative algebra. On a whole, the book provides a very accessible and self-contained introduction to algebraic geometry, up to a quite advanced level. Every chapter of the book is preceded by a motivating introduction with an informal discussion of the contents. Typical examples and an abundance of exercises illustrate each section. This way the book is an excellent solution for learning by yourself or for complementing knowledge that is already present. It can equally be used as a convenient source for courses and seminars or as supplemental literature.
Author |
: Robert Bix |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 356 |
Release |
: 2006-11-22 |
ISBN-10 |
: 9780387392738 |
ISBN-13 |
: 0387392734 |
Rating |
: 4/5 (38 Downloads) |
Synopsis Conics and Cubics by : Robert Bix
Conics and Cubics offers an accessible and well illustrated introduction to algebraic curves. By classifying irreducible cubics over the real numbers and proving that their points form Abelian groups, the book gives readers easy access to the study of elliptic curves. It includes a simple proof of Bezout’s Theorem on the number of intersections of two curves. The subject area is described by means of concrete and accessible examples. The book is a text for a one-semester course.