Introduction to Algebraic Geometry

Introduction to Algebraic Geometry
Author :
Publisher : American Mathematical Soc.
Total Pages : 498
Release :
ISBN-10 : 9781470435189
ISBN-13 : 1470435187
Rating : 4/5 (89 Downloads)

Synopsis Introduction to Algebraic Geometry by : Steven Dale Cutkosky

This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.

Introduction to Algebraic Geometry

Introduction to Algebraic Geometry
Author :
Publisher : Springer Nature
Total Pages : 481
Release :
ISBN-10 : 9783030626440
ISBN-13 : 303062644X
Rating : 4/5 (40 Downloads)

Synopsis Introduction to Algebraic Geometry by : Igor Kriz

The goal of this book is to provide an introduction to algebraic geometry accessible to students. Starting from solutions of polynomial equations, modern tools of the subject soon appear, motivated by how they improve our understanding of geometrical concepts. In many places, analogies and differences with related mathematical areas are explained. The text approaches foundations of algebraic geometry in a complete and self-contained way, also covering the underlying algebra. The last two chapters include a comprehensive treatment of cohomology and discuss some of its applications in algebraic geometry.

Algebraic Geometry

Algebraic Geometry
Author :
Publisher : Springer Science & Business Media
Total Pages : 511
Release :
ISBN-10 : 9781475738490
ISBN-13 : 1475738498
Rating : 4/5 (90 Downloads)

Synopsis Algebraic Geometry by : Robin Hartshorne

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.

Introduction to Algebraic Geometry

Introduction to Algebraic Geometry
Author :
Publisher : Courier Dover Publications
Total Pages : 273
Release :
ISBN-10 : 9780486839806
ISBN-13 : 048683980X
Rating : 4/5 (06 Downloads)

Synopsis Introduction to Algebraic Geometry by : Serge Lang

Author Serge Lang defines algebraic geometry as the study of systems of algebraic equations in several variables and of the structure that one can give to the solutions of such equations. The study can be carried out in four ways: analytical, topological, algebraico-geometric, and arithmetic. This volume offers a rapid, concise, and self-contained introductory approach to the algebraic aspects of the third method, the algebraico-geometric. The treatment assumes only familiarity with elementary algebra up to the level of Galois theory. Starting with an opening chapter on the general theory of places, the author advances to examinations of algebraic varieties, the absolute theory of varieties, and products, projections, and correspondences. Subsequent chapters explore normal varieties, divisors and linear systems, differential forms, the theory of simple points, and algebraic groups, concluding with a focus on the Riemann-Roch theorem. All the theorems of a general nature related to the foundations of the theory of algebraic groups are featured.

Introduction to Algebraic Geometry

Introduction to Algebraic Geometry
Author :
Publisher :
Total Pages : 252
Release :
ISBN-10 : 0511573626
ISBN-13 : 9780511573620
Rating : 4/5 (26 Downloads)

Synopsis Introduction to Algebraic Geometry by : Brendan Hassett

Central concepts most useful for computation; for undergraduate/graduate students in mathematics, researchers in applications.

An Introduction to Algebraic Geometry and Algebraic Groups

An Introduction to Algebraic Geometry and Algebraic Groups
Author :
Publisher : Oxford University Press
Total Pages : 321
Release :
ISBN-10 : 9780199676163
ISBN-13 : 019967616X
Rating : 4/5 (63 Downloads)

Synopsis An Introduction to Algebraic Geometry and Algebraic Groups by : Meinolf Geck

An accessible text introducing algebraic groups at advanced undergraduate and early graduate level, this book covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups with a BN-pair, Frobenius maps on affine varieties and algebraic groups, zeta functions and Lefschetz numbers for varieties over finite fields.

Introduction to Commutative Algebra and Algebraic Geometry

Introduction to Commutative Algebra and Algebraic Geometry
Author :
Publisher : Springer Science & Business Media
Total Pages : 253
Release :
ISBN-10 : 9781461459873
ISBN-13 : 1461459877
Rating : 4/5 (73 Downloads)

Synopsis Introduction to Commutative Algebra and Algebraic Geometry by : Ernst Kunz

Originally published in 1985, this classic textbook is an English translation of Einführung in die kommutative Algebra und algebraische Geometrie. As part of the Modern Birkhäuser Classics series, the publisher is proud to make Introduction to Commutative Algebra and Algebraic Geometry available to a wider audience. Aimed at students who have taken a basic course in algebra, the goal of the text is to present important results concerning the representation of algebraic varieties as intersections of the least possible number of hypersurfaces and—a closely related problem—with the most economical generation of ideals in Noetherian rings. Along the way, one encounters many basic concepts of commutative algebra and algebraic geometry and proves many facts which can then serve as a basic stock for a deeper study of these subjects.

Algebraic Geometry

Algebraic Geometry
Author :
Publisher : Springer Science & Business Media
Total Pages : 267
Release :
ISBN-10 : 9781848000568
ISBN-13 : 1848000561
Rating : 4/5 (68 Downloads)

Synopsis Algebraic Geometry by : Daniel Perrin

Aimed primarily at graduate students and beginning researchers, this book provides an introduction to algebraic geometry that is particularly suitable for those with no previous contact with the subject; it assumes only the standard background of undergraduate algebra. The book starts with easily-formulated problems with non-trivial solutions and uses these problems to introduce the fundamental tools of modern algebraic geometry: dimension; singularities; sheaves; varieties; and cohomology. A range of exercises is provided for each topic discussed, and a selection of problems and exam papers are collected in an appendix to provide material for further study.

Algebraic Geometry and Commutative Algebra

Algebraic Geometry and Commutative Algebra
Author :
Publisher : Springer Science & Business Media
Total Pages : 508
Release :
ISBN-10 : 9781447148296
ISBN-13 : 1447148290
Rating : 4/5 (96 Downloads)

Synopsis Algebraic Geometry and Commutative Algebra by : Siegfried Bosch

Algebraic geometry is a fascinating branch of mathematics that combines methods from both, algebra and geometry. It transcends the limited scope of pure algebra by means of geometric construction principles. Moreover, Grothendieck’s schemes invented in the late 1950s allowed the application of algebraic-geometric methods in fields that formerly seemed to be far away from geometry, like algebraic number theory. The new techniques paved the way to spectacular progress such as the proof of Fermat’s Last Theorem by Wiles and Taylor. The scheme-theoretic approach to algebraic geometry is explained for non-experts. More advanced readers can use the book to broaden their view on the subject. A separate part deals with the necessary prerequisites from commutative algebra. On a whole, the book provides a very accessible and self-contained introduction to algebraic geometry, up to a quite advanced level. Every chapter of the book is preceded by a motivating introduction with an informal discussion of the contents. Typical examples and an abundance of exercises illustrate each section. This way the book is an excellent solution for learning by yourself or for complementing knowledge that is already present. It can equally be used as a convenient source for courses and seminars or as supplemental literature.

Conics and Cubics

Conics and Cubics
Author :
Publisher : Springer Science & Business Media
Total Pages : 356
Release :
ISBN-10 : 9780387392738
ISBN-13 : 0387392734
Rating : 4/5 (38 Downloads)

Synopsis Conics and Cubics by : Robert Bix

Conics and Cubics offers an accessible and well illustrated introduction to algebraic curves. By classifying irreducible cubics over the real numbers and proving that their points form Abelian groups, the book gives readers easy access to the study of elliptic curves. It includes a simple proof of Bezout’s Theorem on the number of intersections of two curves. The subject area is described by means of concrete and accessible examples. The book is a text for a one-semester course.