Real Algebraic Geometry And Optimization
Download Real Algebraic Geometry And Optimization full books in PDF, epub, and Kindle. Read online free Real Algebraic Geometry And Optimization ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Grigoriy Blekherman |
Publisher |
: SIAM |
Total Pages |
: 487 |
Release |
: 2013-03-21 |
ISBN-10 |
: 9781611972283 |
ISBN-13 |
: 1611972280 |
Rating |
: 4/5 (83 Downloads) |
Synopsis Semidefinite Optimization and Convex Algebraic Geometry by : Grigoriy Blekherman
An accessible introduction to convex algebraic geometry and semidefinite optimization. For graduate students and researchers in mathematics and computer science.
Author |
: Saugata Basu |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 602 |
Release |
: 2013-03-09 |
ISBN-10 |
: 9783662053553 |
ISBN-13 |
: 3662053551 |
Rating |
: 4/5 (53 Downloads) |
Synopsis Algorithms in Real Algebraic Geometry by : Saugata Basu
In this first-ever graduate textbook on the algorithmic aspects of real algebraic geometry, the main ideas and techniques presented form a coherent and rich body of knowledge, linked to many areas of mathematics and computing. Mathematicians already aware of real algebraic geometry will find relevant information about the algorithmic aspects. Researchers in computer science and engineering will find the required mathematical background. This self-contained book is accessible to graduate and undergraduate students.
Author |
: Thorsten Theobald |
Publisher |
: American Mathematical Society |
Total Pages |
: 312 |
Release |
: 2024-04-17 |
ISBN-10 |
: 9781470474317 |
ISBN-13 |
: 147047431X |
Rating |
: 4/5 (17 Downloads) |
Synopsis Real Algebraic Geometry and Optimization by : Thorsten Theobald
This book provides a comprehensive and user-friendly exploration of the tremendous recent developments that reveal the connections between real algebraic geometry and optimization, two subjects that were usually taught separately until the beginning of the 21st century. Real algebraic geometry studies the solutions of polynomial equations and polynomial inequalities over the real numbers. Real algebraic problems arise in many applications, including science and engineering, computer vision, robotics, and game theory. Optimization is concerned with minimizing or maximizing a given objective function over a feasible set. Presenting key ideas from classical and modern concepts in real algebraic geometry, this book develops related convex optimization techniques for polynomial optimization. The connection to optimization invites a computational view on real algebraic geometry and opens doors to applications. Intended as an introduction for students of mathematics or related fields at an advanced undergraduate or graduate level, this book serves as a valuable resource for researchers and practitioners. Each chapter is complemented by a collection of beneficial exercises, notes on references, and further reading. As a prerequisite, only some undergraduate algebra is required.
Author |
: Jesus A. De Loera |
Publisher |
: SIAM |
Total Pages |
: 320 |
Release |
: 2013-01-31 |
ISBN-10 |
: 9781611972436 |
ISBN-13 |
: 1611972434 |
Rating |
: 4/5 (36 Downloads) |
Synopsis Algebraic and Geometric Ideas in the Theory of Discrete Optimization by : Jesus A. De Loera
In recent years, many new techniques have emerged in the mathematical theory of discrete optimization that have proven to be effective in solving a number of hard problems. This book presents these recent advances, particularly those that arise from algebraic geometry, commutative algebra, convex and discrete geometry, generating functions, and other tools normally considered outside of the standard curriculum in optimization. These new techniques, all of which are presented with minimal prerequisites, provide a transition from linear to nonlinear discrete optimization. This book can be used as a textbook for advanced undergraduates or first-year graduate students in mathematics, computer science or operations research. It is also appropriate for mathematicians, engineers, and scientists engaged in computation who wish to gain a deeper understanding of how and why algorithms work.
Author |
: Mihai Putinar |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 382 |
Release |
: 2008-12-10 |
ISBN-10 |
: 9780387096865 |
ISBN-13 |
: 0387096868 |
Rating |
: 4/5 (65 Downloads) |
Synopsis Emerging Applications of Algebraic Geometry by : Mihai Putinar
Recent advances in both the theory and implementation of computational algebraic geometry have led to new, striking applications to a variety of fields of research. The articles in this volume highlight a range of these applications and provide introductory material for topics covered in the IMA workshops on "Optimization and Control" and "Applications in Biology, Dynamics, and Statistics" held during the IMA year on Applications of Algebraic Geometry. The articles related to optimization and control focus on burgeoning use of semidefinite programming and moment matrix techniques in computational real algebraic geometry. The new direction towards a systematic study of non-commutative real algebraic geometry is well represented in the volume. Other articles provide an overview of the way computational algebra is useful for analysis of contingency tables, reconstruction of phylogenetic trees, and in systems biology. The contributions collected in this volume are accessible to non-experts, self-contained and informative; they quickly move towards cutting edge research in these areas, and provide a wealth of open problems for future research.
Author |
: Jean-Bernard Lasserre |
Publisher |
: World Scientific |
Total Pages |
: 384 |
Release |
: 2010 |
ISBN-10 |
: 9781848164468 |
ISBN-13 |
: 1848164467 |
Rating |
: 4/5 (68 Downloads) |
Synopsis Moments, Positive Polynomials and Their Applications by : Jean-Bernard Lasserre
1. The generalized moment problem. 1.1. Formulations. 1.2. Duality theory. 1.3. Computational complexity. 1.4. Summary. 1.5. Exercises. 1.6. Notes and sources -- 2. Positive polynomials. 2.1. Sum of squares representations and semi-definite optimization. 2.2. Nonnegative versus s.o.s. polynomials. 2.3. Representation theorems : univariate case. 2.4. Representation theorems : mutivariate case. 2.5. Polynomials positive on a compact basic semi-algebraic set. 2.6. Polynomials nonnegative on real varieties. 2.7. Representations with sparsity properties. 2.8. Representation of convex polynomials. 2.9. Summary. 2.10. Exercises. 2.11. Notes and sources -- 3. Moments. 3.1. The one-dimensional moment problem. 3.2. The multi-dimensional moment problem. 3.3. The K-moment problem. 3.4. Moment conditions for bounded density. 3.5. Summary. 3.6. Exercises. 3.7. Notes and sources -- 4. Algorithms for moment problems. 4.1. The overall approach. 4.2. Semidefinite relaxations. 4.3. Extraction of solutions. 4.4. Linear relaxations. 4.5. Extensions. 4.6. Exploiting sparsity. 4.7. Summary. 4.8. Exercises. 4.9. Notes and sources. 4.10. Proofs -- 5. Global optimization over polynomials. 5.1. The primal and dual perspectives. 5.2. Unconstrained polynomial optimization. 5.3. Constrained polynomial optimization : semidefinite relaxations. 5.4. Linear programming relaxations. 5.5. Global optimality conditions. 5.6. Convex polynomial programs. 5.7. Discrete optimization. 5.8. Global minimization of a rational function. 5.9. Exploiting symmetry. 5.10. Summary. 5.11. Exercises. 5.12. Notes and sources -- 6. Systems of polynomial equations. 6.1. Introduction. 6.2. Finding a real solution to systems of polynomial equations. 6.3. Finding all complex and/or all real solutions : a unified treatment. 6.4. Summary. 6.5. Exercises. 6.6. Notes and sources -- 7. Applications in probability. 7.1. Upper bounds on measures with moment conditions. 7.2. Measuring basic semi-algebraic sets. 7.3. Measures with given marginals. 7.4. Summary. 7.5. Exercises. 7.6. Notes and sources -- 8. Markov chains applications. 8.1. Bounds on invariant measures. 8.2. Evaluation of ergodic criteria. 8.3. Summary. 8.4. Exercises. 8.5. Notes and sources -- 9. Application in mathematical finance. 9.1. Option pricing with moment information. 9.2. Option pricing with a dynamic model. 9.3. Summary. 9.4. Notes and sources -- 10. Application in control. 10.1. Introduction. 10.2. Weak formulation of optimal control problems. 10.3. Semidefinite relaxations for the OCP. 10.4. Summary. 10.5. Notes and sources -- 11. Convex envelope and representation of convex sets. 11.1. The convex envelope of a rational function. 11.2. Semidefinite representation of convex sets. 11.3. Algebraic certificates of convexity. 11.4. Summary. 11.5. Exercises. 11.6. Notes and sources -- 12. Multivariate integration 12.1. Integration of a rational function. 12.2. Integration of exponentials of polynomials. 12.3. Maximum entropy estimation. 12.4. Summary. 12.5. Exercises. 12.6. Notes and sources -- 13. Min-max problems and Nash equilibria. 13.1. Robust polynomial optimization. 13.2. Minimizing the sup of finitely many rational cunctions. 13.3. Application to Nash equilibria. 13.4. Exercises. 13.5. Notes and sources -- 14. Bounds on linear PDE. 14.1. Linear partial differential equations. 14.2. Notes and sources
Author |
: Thorsten Theobald |
Publisher |
: American Mathematical Society |
Total Pages |
: 312 |
Release |
: 2024-04-18 |
ISBN-10 |
: 9781470476366 |
ISBN-13 |
: 1470476363 |
Rating |
: 4/5 (66 Downloads) |
Synopsis Real Algebraic Geometry and Optimization by : Thorsten Theobald
This book provides a comprehensive and user-friendly exploration of the tremendous recent developments that reveal the connections between real algebraic geometry and optimization, two subjects that were usually taught separately until the beginning of the 21st century. Real algebraic geometry studies the solutions of polynomial equations and polynomial inequalities over the real numbers. Real algebraic problems arise in many applications, including science and engineering, computer vision, robotics, and game theory. Optimization is concerned with minimizing or maximizing a given objective function over a feasible set. Presenting key ideas from classical and modern concepts in real algebraic geometry, this book develops related convex optimization techniques for polynomial optimization. The connection to optimization invites a computational view on real algebraic geometry and opens doors to applications. Intended as an introduction for students of mathematics or related fields at an advanced undergraduate or graduate level, this book serves as a valuable resource for researchers and practitioners. Each chapter is complemented by a collection of beneficial exercises, notes on references, and further reading. As a prerequisite, only some undergraduate algebra is required.
Author |
: Bernd Gärtner |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 253 |
Release |
: 2012-01-10 |
ISBN-10 |
: 9783642220159 |
ISBN-13 |
: 3642220150 |
Rating |
: 4/5 (59 Downloads) |
Synopsis Approximation Algorithms and Semidefinite Programming by : Bernd Gärtner
Semidefinite programs constitute one of the largest classes of optimization problems that can be solved with reasonable efficiency - both in theory and practice. They play a key role in a variety of research areas, such as combinatorial optimization, approximation algorithms, computational complexity, graph theory, geometry, real algebraic geometry and quantum computing. This book is an introduction to selected aspects of semidefinite programming and its use in approximation algorithms. It covers the basics but also a significant amount of recent and more advanced material. There are many computational problems, such as MAXCUT, for which one cannot reasonably expect to obtain an exact solution efficiently, and in such case, one has to settle for approximate solutions. For MAXCUT and its relatives, exciting recent results suggest that semidefinite programming is probably the ultimate tool. Indeed, assuming the Unique Games Conjecture, a plausible but as yet unproven hypothesis, it was shown that for these problems, known algorithms based on semidefinite programming deliver the best possible approximation ratios among all polynomial-time algorithms. This book follows the “semidefinite side” of these developments, presenting some of the main ideas behind approximation algorithms based on semidefinite programming. It develops the basic theory of semidefinite programming, presents one of the known efficient algorithms in detail, and describes the principles of some others. It also includes applications, focusing on approximation algorithms.
Author |
: Jean Bernard Lasserre |
Publisher |
: Cambridge University Press |
Total Pages |
: 355 |
Release |
: 2015-02-19 |
ISBN-10 |
: 9781107060579 |
ISBN-13 |
: 1107060575 |
Rating |
: 4/5 (79 Downloads) |
Synopsis An Introduction to Polynomial and Semi-Algebraic Optimization by : Jean Bernard Lasserre
The first comprehensive introduction to the powerful moment approach for solving global optimization problems.
Author |
: Michael Joswig |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 251 |
Release |
: 2013-01-04 |
ISBN-10 |
: 9781447148173 |
ISBN-13 |
: 1447148177 |
Rating |
: 4/5 (73 Downloads) |
Synopsis Polyhedral and Algebraic Methods in Computational Geometry by : Michael Joswig
Polyhedral and Algebraic Methods in Computational Geometry provides a thorough introduction into algorithmic geometry and its applications. It presents its primary topics from the viewpoints of discrete, convex and elementary algebraic geometry. The first part of the book studies classical problems and techniques that refer to polyhedral structures. The authors include a study on algorithms for computing convex hulls as well as the construction of Voronoi diagrams and Delone triangulations. The second part of the book develops the primary concepts of (non-linear) computational algebraic geometry. Here, the book looks at Gröbner bases and solving systems of polynomial equations. The theory is illustrated by applications in computer graphics, curve reconstruction and robotics. Throughout the book, interconnections between computational geometry and other disciplines (such as algebraic geometry, optimization and numerical mathematics) are established. Polyhedral and Algebraic Methods in Computational Geometry is directed towards advanced undergraduates in mathematics and computer science, as well as towards engineering students who are interested in the applications of computational geometry.