Random Walk: A Modern Introduction

Random Walk: A Modern Introduction
Author :
Publisher : Cambridge University Press
Total Pages : 376
Release :
ISBN-10 : 0521519187
ISBN-13 : 9780521519182
Rating : 4/5 (87 Downloads)

Synopsis Random Walk: A Modern Introduction by : Gregory F. Lawler

Random walks are stochastic processes formed by successive summation of independent, identically distributed random variables and are one of the most studied topics in probability theory. This contemporary introduction evolved from courses taught at Cornell University and the University of Chicago by the first author, who is one of the most highly regarded researchers in the field of stochastic processes. This text meets the need for a modern reference to the detailed properties of an important class of random walks on the integer lattice. It is suitable for probabilists, mathematicians working in related fields, and for researchers in other disciplines who use random walks in modeling.

Random Walk: A Modern Introduction

Random Walk: A Modern Introduction
Author :
Publisher : Cambridge University Press
Total Pages : 377
Release :
ISBN-10 : 9781139488761
ISBN-13 : 1139488767
Rating : 4/5 (61 Downloads)

Synopsis Random Walk: A Modern Introduction by : Gregory F. Lawler

Random walks are stochastic processes formed by successive summation of independent, identically distributed random variables and are one of the most studied topics in probability theory. This contemporary introduction evolved from courses taught at Cornell University and the University of Chicago by the first author, who is one of the most highly regarded researchers in the field of stochastic processes. This text meets the need for a modern reference to the detailed properties of an important class of random walks on the integer lattice. It is suitable for probabilists, mathematicians working in related fields, and for researchers in other disciplines who use random walks in modeling.

Random Walk and the Heat Equation

Random Walk and the Heat Equation
Author :
Publisher : American Mathematical Soc.
Total Pages : 170
Release :
ISBN-10 : 9780821848296
ISBN-13 : 0821848291
Rating : 4/5 (96 Downloads)

Synopsis Random Walk and the Heat Equation by : Gregory F. Lawler

The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation and considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equations and the closely related notion of harmonic functions from a probabilistic perspective. The theme of the first two chapters of the book is the relationship between random walks and the heat equation. This first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For example, solving the heat equation in the discrete setting becomes a problem of diagonalization of symmetric matrices, which becomes a problem in Fourier series in the continuous case. Random walk and Brownian motion are introduced and developed from first principles. The latter two chapters discuss different topics: martingales and fractal dimension, with the chapters tied together by one example, a random Cantor set. The idea of this book is to merge probabilistic and deterministic approaches to heat flow. It is also intended as a bridge from undergraduate analysis to graduate and research perspectives. The book is suitable for advanced undergraduates, particularly those considering graduate work in mathematics or related areas.

Intersections of Random Walks

Intersections of Random Walks
Author :
Publisher : Springer Science & Business Media
Total Pages : 226
Release :
ISBN-10 : 9781461459729
ISBN-13 : 1461459729
Rating : 4/5 (29 Downloads)

Synopsis Intersections of Random Walks by : Gregory F. Lawler

A central study in Probability Theory is the behavior of fluctuation phenomena of partial sums of different types of random variable. One of the most useful concepts for this purpose is that of the random walk which has applications in many areas, particularly in statistical physics and statistical chemistry. Originally published in 1991, Intersections of Random Walks focuses on and explores a number of problems dealing primarily with the nonintersection of random walks and the self-avoiding walk. Many of these problems arise in studying statistical physics and other critical phenomena. Topics include: discrete harmonic measure, including an introduction to diffusion limited aggregation (DLA); the probability that independent random walks do not intersect; and properties of walks without self-intersections. The present softcover reprint includes corrections and addenda from the 1996 printing, and makes this classic monograph available to a wider audience. With a self-contained introduction to the properties of simple random walks, and an emphasis on rigorous results, the book will be useful to researchers in probability and statistical physics and to graduate students interested in basic properties of random walks.

Random Walks on Reductive Groups

Random Walks on Reductive Groups
Author :
Publisher : Springer
Total Pages : 319
Release :
ISBN-10 : 9783319477213
ISBN-13 : 3319477218
Rating : 4/5 (13 Downloads)

Synopsis Random Walks on Reductive Groups by : Yves Benoist

The classical theory of random walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assumption that the action of the matrices is semisimple – or, equivalently, that the Zariski closure of the group generated by these matrices is reductive - and under suitable moment assumptions, it is shown that the norm of the products of such random matrices satisfies a number of classical probabilistic laws. This book includes necessary background on the theory of reductive algebraic groups, probability theory and operator theory, thereby providing a modern introduction to the topic.

A Random Walk Down Wall Street: The Time-Tested Strategy for Successful Investing (Ninth Edition)

A Random Walk Down Wall Street: The Time-Tested Strategy for Successful Investing (Ninth Edition)
Author :
Publisher : W. W. Norton & Company
Total Pages : 454
Release :
ISBN-10 : 9780393330335
ISBN-13 : 0393330338
Rating : 4/5 (35 Downloads)

Synopsis A Random Walk Down Wall Street: The Time-Tested Strategy for Successful Investing (Ninth Edition) by : Burton G. Malkiel

Updated with a new chapter that draws on behavioral finance, the field that studies the psychology of investment decisions, the bestselling guide to investing evaluates the full range of financial opportunities.

A Random Walk Down Wall Street: The Time-Tested Strategy for Successful Investing (Tenth Edition)

A Random Walk Down Wall Street: The Time-Tested Strategy for Successful Investing (Tenth Edition)
Author :
Publisher : W. W. Norton & Company
Total Pages : 493
Release :
ISBN-10 : 9780393340747
ISBN-13 : 0393340740
Rating : 4/5 (47 Downloads)

Synopsis A Random Walk Down Wall Street: The Time-Tested Strategy for Successful Investing (Tenth Edition) by : Burton G. Malkiel

Presents an informative guide to financial investment, explaining how to maximize gains and minimize losses and examining a broad spectrum of financial opportunities, from mutual funds to real estate to gold.

A Random Walk Down Wall Street

A Random Walk Down Wall Street
Author :
Publisher : W. W. Norton & Company
Total Pages : 422
Release :
ISBN-10 : 0393057828
ISBN-13 : 9780393057829
Rating : 4/5 (28 Downloads)

Synopsis A Random Walk Down Wall Street by : Burton Gordon Malkiel

An informative guide to successful investing, offering a vast array of advice on how investors can tilt the odds in their favour.

A Modern Introduction to Probability and Statistics

A Modern Introduction to Probability and Statistics
Author :
Publisher : Springer Science & Business Media
Total Pages : 485
Release :
ISBN-10 : 9781846281686
ISBN-13 : 1846281687
Rating : 4/5 (86 Downloads)

Synopsis A Modern Introduction to Probability and Statistics by : F.M. Dekking

Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books

Random Walk, Brownian Motion, and Martingales

Random Walk, Brownian Motion, and Martingales
Author :
Publisher : Springer Nature
Total Pages : 396
Release :
ISBN-10 : 9783030789398
ISBN-13 : 303078939X
Rating : 4/5 (98 Downloads)

Synopsis Random Walk, Brownian Motion, and Martingales by : Rabi Bhattacharya

This textbook offers an approachable introduction to stochastic processes that explores the four pillars of random walk, branching processes, Brownian motion, and martingales. Building from simple examples, the authors focus on developing context and intuition before formalizing the theory of each topic. This inviting approach illuminates the key ideas and computations in the proofs, forming an ideal basis for further study. Consisting of many short chapters, the book begins with a comprehensive account of the simple random walk in one dimension. From here, different paths may be chosen according to interest. Themes span Poisson processes, branching processes, the Kolmogorov–Chentsov theorem, martingales, renewal theory, and Brownian motion. Special topics follow, showcasing a selection of important contemporary applications, including mathematical finance, optimal stopping, ruin theory, branching random walk, and equations of fluids. Engaging exercises accompany the theory throughout. Random Walk, Brownian Motion, and Martingales is an ideal introduction to the rigorous study of stochastic processes. Students and instructors alike will appreciate the accessible, example-driven approach. A single, graduate-level course in probability is assumed.