Intersections of Random Walks

Intersections of Random Walks
Author :
Publisher : Springer Science & Business Media
Total Pages : 226
Release :
ISBN-10 : 9781461459729
ISBN-13 : 1461459729
Rating : 4/5 (29 Downloads)

Synopsis Intersections of Random Walks by : Gregory F. Lawler

A central study in Probability Theory is the behavior of fluctuation phenomena of partial sums of different types of random variable. One of the most useful concepts for this purpose is that of the random walk which has applications in many areas, particularly in statistical physics and statistical chemistry. Originally published in 1991, Intersections of Random Walks focuses on and explores a number of problems dealing primarily with the nonintersection of random walks and the self-avoiding walk. Many of these problems arise in studying statistical physics and other critical phenomena. Topics include: discrete harmonic measure, including an introduction to diffusion limited aggregation (DLA); the probability that independent random walks do not intersect; and properties of walks without self-intersections. The present softcover reprint includes corrections and addenda from the 1996 printing, and makes this classic monograph available to a wider audience. With a self-contained introduction to the properties of simple random walks, and an emphasis on rigorous results, the book will be useful to researchers in probability and statistical physics and to graduate students interested in basic properties of random walks.

Random Walk Intersections

Random Walk Intersections
Author :
Publisher : American Mathematical Soc.
Total Pages : 346
Release :
ISBN-10 : 9780821848203
ISBN-13 : 0821848208
Rating : 4/5 (03 Downloads)

Synopsis Random Walk Intersections by : Xia Chen

Involves important and non-trivial results in contemporary probability theory motivated by polymer models, as well as other topics of importance in physics and chemistry.

Intersections of Random Walks

Intersections of Random Walks
Author :
Publisher :
Total Pages : 219
Release :
ISBN-10 : 3764335572
ISBN-13 : 9783764335571
Rating : 4/5 (72 Downloads)

Synopsis Intersections of Random Walks by : Gregory F. Lawler

Random Walks on Infinite Graphs and Groups

Random Walks on Infinite Graphs and Groups
Author :
Publisher : Cambridge University Press
Total Pages : 350
Release :
ISBN-10 : 9780521552929
ISBN-13 : 0521552923
Rating : 4/5 (29 Downloads)

Synopsis Random Walks on Infinite Graphs and Groups by : Wolfgang Woess

The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a finitely generated group. The transition probabilities are assumed to be adapted to the underlying structure in some way that must be specified precisely in each case. From the probabilistic viewpoint, the question is what impact the particular type of structure has on various aspects of the behaviour of the random walk. Vice-versa, random walks may also be seen as useful tools for classifying, or at least describing the structure of graphs and groups. Links with spectral theory and discrete potential theory are also discussed. This book will be essential reading for all researchers working in stochastic process and related topics.

Selected Works of Oded Schramm

Selected Works of Oded Schramm
Author :
Publisher : Springer Science & Business Media
Total Pages : 1199
Release :
ISBN-10 : 9781441996756
ISBN-13 : 1441996753
Rating : 4/5 (56 Downloads)

Synopsis Selected Works of Oded Schramm by : Itai Benjamini

This volume is dedicated to the memory of the late Oded Schramm (1961-2008), distinguished mathematician. Throughout his career, Schramm made profound and beautiful contributions to mathematics that will have a lasting influence. In these two volumes, Editors Itai Benjamini and Olle Häggström have collected some of his papers, supplemented with three survey papers by Steffen Rohde, Häggström and Cristophe Garban that further elucidate his work. The papers within are a representative collection that shows the breadth, depth, enthusiasm and clarity of his work, with sections on Geometry, Noise Sensitivity, Random Walks and Graph Limits, Percolation, and finally Schramm-Loewner Evolution. An introduction by the Editors and a comprehensive bibliography of Schramm's publications complete the volume. The book will be of especial interest to researchers in probability and geometry, and in the history of these subjects.

Random Walks and Electric Networks

Random Walks and Electric Networks
Author :
Publisher : American Mathematical Soc.
Total Pages : 174
Release :
ISBN-10 : 9781614440222
ISBN-13 : 1614440220
Rating : 4/5 (22 Downloads)

Synopsis Random Walks and Electric Networks by : Peter G. Doyle

Probability theory, like much of mathematics, is indebted to physics as a source of problems and intuition for solving these problems. Unfortunately, the level of abstraction of current mathematics often makes it difficult for anyone but an expert to appreciate this fact. Random Walks and electric networks looks at the interplay of physics and mathematics in terms of an example—the relation between elementary electric network theory and random walks —where the mathematics involved is at the college level.

Random Walk: A Modern Introduction

Random Walk: A Modern Introduction
Author :
Publisher : Cambridge University Press
Total Pages : 376
Release :
ISBN-10 : 0521519187
ISBN-13 : 9780521519182
Rating : 4/5 (87 Downloads)

Synopsis Random Walk: A Modern Introduction by : Gregory F. Lawler

Random walks are stochastic processes formed by successive summation of independent, identically distributed random variables and are one of the most studied topics in probability theory. This contemporary introduction evolved from courses taught at Cornell University and the University of Chicago by the first author, who is one of the most highly regarded researchers in the field of stochastic processes. This text meets the need for a modern reference to the detailed properties of an important class of random walks on the integer lattice. It is suitable for probabilists, mathematicians working in related fields, and for researchers in other disciplines who use random walks in modeling.

Perplexing Problems in Probability

Perplexing Problems in Probability
Author :
Publisher : Springer Science & Business Media
Total Pages : 416
Release :
ISBN-10 : 0817640932
ISBN-13 : 9780817640934
Rating : 4/5 (32 Downloads)

Synopsis Perplexing Problems in Probability by : Harry Kesten

Harry Kesten has had a profound influence on probability theory for over thirty years. To honor his achievements, and to highlight important directions for future research, a number of prominent probabilists have written survey articles on a wide variety of active areas of contemporary probability, many of which are closely related to Kesten's work. This festschrift volume is an expression of appreciation and a demonstration of the depth and breadth of his ideas.

Probability on Graphs

Probability on Graphs
Author :
Publisher : Cambridge University Press
Total Pages : 279
Release :
ISBN-10 : 9781108542999
ISBN-13 : 1108542999
Rating : 4/5 (99 Downloads)

Synopsis Probability on Graphs by : Geoffrey Grimmett

This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.

Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory

Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 446
Release :
ISBN-10 : 9783662028667
ISBN-13 : 3662028662
Rating : 4/5 (67 Downloads)

Synopsis Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory by : Roberto Fernandez

Simple random walks - or equivalently, sums of independent random vari ables - have long been a standard topic of probability theory and mathemat ical physics. In the 1950s, non-Markovian random-walk models, such as the self-avoiding walk,were introduced into theoretical polymer physics, and gradu ally came to serve as a paradigm for the general theory of critical phenomena. In the past decade, random-walk expansions have evolved into an important tool for the rigorous analysis of critical phenomena in classical spin systems and of the continuum limit in quantum field theory. Among the results obtained by random-walk methods are the proof of triviality of the cp4 quantum field theo ryin space-time dimension d (::::) 4, and the proof of mean-field critical behavior for cp4 and Ising models in space dimension d (::::) 4. The principal goal of the present monograph is to present a detailed review of these developments. It is supplemented by a brief excursion to the theory of random surfaces and various applications thereof. This book has grown out of research carried out by the authors mainly from 1982 until the middle of 1985. Our original intention was to write a research paper. However, the writing of such a paper turned out to be a very slow process, partly because of our geographical separation, partly because each of us was involved in other projects that may have appeared more urgent.