Random Matrices
Download Random Matrices full books in PDF, epub, and Kindle. Read online free Random Matrices ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Giacomo Livan |
Publisher |
: Springer |
Total Pages |
: 122 |
Release |
: 2018-01-16 |
ISBN-10 |
: 9783319708850 |
ISBN-13 |
: 3319708856 |
Rating |
: 4/5 (50 Downloads) |
Synopsis Introduction to Random Matrices by : Giacomo Livan
Modern developments of Random Matrix Theory as well as pedagogical approaches to the standard core of the discipline are surprisingly hard to find in a well-organized, readable and user-friendly fashion. This slim and agile book, written in a pedagogical and hands-on style, without sacrificing formal rigor fills this gap. It brings Ph.D. students in Physics, as well as more senior practitioners, through the standard tools and results on random matrices, with an eye on most recent developments that are not usually covered in introductory texts. The focus is mainly on random matrices with real spectrum.The main guiding threads throughout the book are the Gaussian Ensembles. In particular, Wigner’s semicircle law is derived multiple times to illustrate several techniques (e.g., Coulomb gas approach, replica theory).Most chapters are accompanied by Matlab codes (stored in an online repository) to guide readers through the numerical check of most analytical results.
Author |
: Greg W. Anderson |
Publisher |
: Cambridge University Press |
Total Pages |
: 507 |
Release |
: 2010 |
ISBN-10 |
: 9780521194525 |
ISBN-13 |
: 0521194520 |
Rating |
: 4/5 (25 Downloads) |
Synopsis An Introduction to Random Matrices by : Greg W. Anderson
A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.
Author |
: Madan Lal Mehta |
Publisher |
: Elsevier |
Total Pages |
: 707 |
Release |
: 2004-10-06 |
ISBN-10 |
: 9780080474113 |
ISBN-13 |
: 008047411X |
Rating |
: 4/5 (13 Downloads) |
Synopsis Random Matrices by : Madan Lal Mehta
Random Matrices gives a coherent and detailed description of analytical methods devised to study random matrices. These methods are critical to the understanding of various fields in in mathematics and mathematical physics, such as nuclear excitations, ultrasonic resonances of structural materials, chaotic systems, the zeros of the Riemann and other zeta functions. More generally they apply to the characteristic energies of any sufficiently complicated system and which have found, since the publication of the second edition, many new applications in active research areas such as quantum gravity, traffic and communications networks or stock movement in the financial markets. This revised and enlarged third edition reflects the latest developements in the field and convey a greater experience with results previously formulated. For example, the theory of skew-orthogoanl and bi-orthogonal polynomials, parallel to that of the widely known and used orthogonal polynomials, is explained here for the first time. - Presentation of many new results in one place for the first time - First time coverage of skew-orthogonal and bi-orthogonal polynomials and their use in the evaluation of some multiple integrals - Fredholm determinants and Painlevé equations - The three Gaussian ensembles (unitary, orthogonal, and symplectic); their n-point correlations, spacing probabilities - Fredholm determinants and inverse scattering theory - Probability densities of random determinants
Author |
: P. Bougerol |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 290 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781468491722 |
ISBN-13 |
: 1468491725 |
Rating |
: 4/5 (22 Downloads) |
Synopsis Products of Random Matrices with Applications to Schrödinger Operators by : P. Bougerol
CHAPTER I THE DETERMINISTIC SCHRODINGER OPERATOR 187 1. The difference equation. Hyperbolic structures 187 2. Self adjointness of H. Spectral properties . 190 3. Slowly increasing generalized eigenfunctions 195 4. Approximations of the spectral measure 196 200 5. The pure point spectrum. A criterion 6. Singularity of the spectrum 202 CHAPTER II ERGODIC SCHRÖDINGER OPERATORS 205 1. Definition and examples 205 2. General spectral properties 206 3. The Lyapunov exponent in the general ergodie case 209 4. The Lyapunov exponent in the independent eas e 211 5. Absence of absolutely continuous spectrum 221 224 6. Distribution of states. Thouless formula 232 7. The pure point spectrum. Kotani's criterion 8. Asymptotic properties of the conductance in 234 the disordered wire CHAPTER III THE PURE POINT SPECTRUM 237 238 1. The pure point spectrum. First proof 240 2. The Laplace transform on SI(2,JR) 247 3. The pure point spectrum. Second proof 250 4. The density of states CHAPTER IV SCHRÖDINGER OPERATORS IN A STRIP 2';3 1. The deterministic Schrödinger operator in 253 a strip 259 2. Ergodie Schrödinger operators in a strip 3. Lyapunov exponents in the independent case. 262 The pure point spectrum (first proof) 267 4. The Laplace transform on Sp(~,JR) 272 5. The pure point spectrum, second proof vii APPENDIX 275 BIBLIOGRAPHY 277 viii PREFACE This book presents two elosely related series of leetures. Part A, due to P.
Author |
: Percy Deift |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 236 |
Release |
: 2009-01-01 |
ISBN-10 |
: 9780821883570 |
ISBN-13 |
: 0821883577 |
Rating |
: 4/5 (70 Downloads) |
Synopsis Random Matrix Theory by : Percy Deift
"This book features a unified derivation of the mathematical theory of the three classical types of invariant random matrix ensembles-orthogonal, unitary, and symplectic. The authors follow the approach of Tracy and Widom, but the exposition here contains a substantial amount of additional material, in particular, facts from functional analysis and the theory of Pfaffians. The main result in the book is a proof of universality for orthogonal and symplectic ensembles corresponding to generalized Gaussian type weights following the authors' prior work. New, quantitative error estimates are derived." --Book Jacket.
Author |
: Leonid Andreevich Pastur |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 650 |
Release |
: 2011 |
ISBN-10 |
: 9780821852859 |
ISBN-13 |
: 082185285X |
Rating |
: 4/5 (59 Downloads) |
Synopsis Eigenvalue Distribution of Large Random Matrices by : Leonid Andreevich Pastur
Random matrix theory is a wide and growing field with a variety of concepts, results, and techniques and a vast range of applications in mathematics and the related sciences. The book, written by well-known experts, offers beginners a fairly balanced collection of basic facts and methods (Part 1 on classical ensembles) and presents experts with an exposition of recent advances in the subject (Parts 2 and 3 on invariant ensembles and ensembles with independent entries). The text includes many of the authors' results and methods on several main aspects of the theory, thus allowing them to present a unique and personal perspective on the subject and to cover many topics using a unified approach essentially based on the Stieltjes transform and orthogonal polynomials. The exposition is supplemented by numerous comments, remarks, and problems. This results in a book that presents a detailed and self-contained treatment of the basic random matrix ensembles and asymptotic regimes. This book will be an important reference for researchers in a variety of areas of mathematics and mathematical physics. Various chapters of the book can be used for graduate courses; the main prerequisite is a basic knowledge of calculus, linear algebra, and probability theory.
Author |
: Jinho Baik |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 478 |
Release |
: 2016-06-22 |
ISBN-10 |
: 9780821848418 |
ISBN-13 |
: 0821848410 |
Rating |
: 4/5 (18 Downloads) |
Synopsis Combinatorics and Random Matrix Theory by : Jinho Baik
Over the last fifteen years a variety of problems in combinatorics have been solved in terms of random matrix theory. More precisely, the situation is as follows: the problems at hand are probabilistic in nature and, in an appropriate scaling limit, it turns out that certain key quantities associated with these problems behave statistically like the eigenvalues of a (large) random matrix. Said differently, random matrix theory provides a “stochastic special function theory” for a broad and growing class of problems in combinatorics. The goal of this book is to analyze in detail two key examples of this phenomenon, viz., Ulam's problem for increasing subsequences of random permutations and domino tilings of the Aztec diamond. Other examples are also described along the way, but in less detail. Techniques from many different areas in mathematics are needed to analyze these problems. These areas include combinatorics, probability theory, functional analysis, complex analysis, and the theory of integrable systems. The book is self-contained, and along the way we develop enough of the theory we need from each area that a general reader with, say, two or three years experience in graduate school can learn the subject directly from the text.
Author |
: Terence Tao |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 298 |
Release |
: 2012-03-21 |
ISBN-10 |
: 9780821874301 |
ISBN-13 |
: 0821874306 |
Rating |
: 4/5 (01 Downloads) |
Synopsis Topics in Random Matrix Theory by : Terence Tao
The field of random matrix theory has seen an explosion of activity in recent years, with connections to many areas of mathematics and physics. However, this makes the current state of the field almost too large to survey in a single book. In this graduate text, we focus on one specific sector of the field, namely the spectral distribution of random Wigner matrix ensembles (such as the Gaussian Unitary Ensemble), as well as iid matrix ensembles. The text is largely self-contained and starts with a review of relevant aspects of probability theory and linear algebra. With over 200 exercises, the book is suitable as an introductory text for beginning graduate students seeking to enter the field.
Author |
: Édouard Brezin |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 519 |
Release |
: 2006-07-03 |
ISBN-10 |
: 9781402045318 |
ISBN-13 |
: 140204531X |
Rating |
: 4/5 (18 Downloads) |
Synopsis Applications of Random Matrices in Physics by : Édouard Brezin
Random matrices are widely and successfully used in physics for almost 60-70 years, beginning with the works of Dyson and Wigner. Although it is an old subject, it is constantly developing into new areas of physics and mathematics. It constitutes now a part of the general culture of a theoretical physicist. Mathematical methods inspired by random matrix theory become more powerful, sophisticated and enjoy rapidly growing applications in physics. Recent examples include the calculation of universal correlations in the mesoscopic system, new applications in disordered and quantum chaotic systems, in combinatorial and growth models, as well as the recent breakthrough, due to the matrix models, in two dimensional gravity and string theory and the non-abelian gauge theories. The book consists of the lectures of the leading specialists and covers rather systematically many of these topics. It can be useful to the specialists in various subjects using random matrices, from PhD students to confirmed scientists.
Author |
: Zhidong Bai |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 560 |
Release |
: 2009-12-10 |
ISBN-10 |
: 9781441906618 |
ISBN-13 |
: 1441906614 |
Rating |
: 4/5 (18 Downloads) |
Synopsis Spectral Analysis of Large Dimensional Random Matrices by : Zhidong Bai
The aim of the book is to introduce basic concepts, main results, and widely applied mathematical tools in the spectral analysis of large dimensional random matrices. The core of the book focuses on results established under moment conditions on random variables using probabilistic methods, and is thus easily applicable to statistics and other areas of science. The book introduces fundamental results, most of them investigated by the authors, such as the semicircular law of Wigner matrices, the Marcenko-Pastur law, the limiting spectral distribution of the multivariate F matrix, limits of extreme eigenvalues, spectrum separation theorems, convergence rates of empirical distributions, central limit theorems of linear spectral statistics, and the partial solution of the famous circular law. While deriving the main results, the book simultaneously emphasizes the ideas and methodologies of the fundamental mathematical tools, among them being: truncation techniques, matrix identities, moment convergence theorems, and the Stieltjes transform. Its treatment is especially fitting to the needs of mathematics and statistics graduate students and beginning researchers, having a basic knowledge of matrix theory and an understanding of probability theory at the graduate level, who desire to learn the concepts and tools in solving problems in this area. It can also serve as a detailed handbook on results of large dimensional random matrices for practical users. This second edition includes two additional chapters, one on the authors' results on the limiting behavior of eigenvectors of sample covariance matrices, another on applications to wireless communications and finance. While attempting to bring this edition up-to-date on recent work, it also provides summaries of other areas which are typically considered part of the general field of random matrix theory.