Quantum Groups And Noncommutative Spaces
Download Quantum Groups And Noncommutative Spaces full books in PDF, epub, and Kindle. Read online free Quantum Groups And Noncommutative Spaces ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Matilde Marcolli |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 247 |
Release |
: 2010-11-02 |
ISBN-10 |
: 9783834898319 |
ISBN-13 |
: 3834898317 |
Rating |
: 4/5 (19 Downloads) |
Synopsis Quantum Groups and Noncommutative Spaces by : Matilde Marcolli
This book is aimed at presenting different methods and perspectives in the theory of Quantum Groups, bridging between the algebraic, representation theoretic, analytic, and differential-geometric approaches. It also covers recent developments in Noncommutative Geometry, which have close relations to quantization and quantum group symmetries. The volume collects surveys by experts which originate from an acitvity at the Max-Planck-Institute for Mathematics in Bonn.
Author |
: Yuri I. Manin |
Publisher |
: Springer |
Total Pages |
: 122 |
Release |
: 2018-10-11 |
ISBN-10 |
: 9783319979878 |
ISBN-13 |
: 3319979876 |
Rating |
: 4/5 (78 Downloads) |
Synopsis Quantum Groups and Noncommutative Geometry by : Yuri I. Manin
This textbook presents the second edition of Manin's celebrated 1988 Montreal lectures, which influenced a new generation of researchers in algebra to take up the study of Hopf algebras and quantum groups. In this expanded write-up of those lectures, Manin systematically develops an approach to quantum groups as symmetry objects in noncommutative geometry in contrast to the more deformation-oriented approach due to Faddeev, Drinfeld, and others. This new edition contains an extra chapter by Theo Raedschelders and Michel Van den Bergh, surveying recent work that focuses on the representation theory of a number of bi- and Hopf algebras that were first introduced in Manin's lectures, and have since gained a lot of attention. Emphasis is placed on the Tannaka–Krein formalism, which further strengthens Manin's approach to symmetry and moduli-objects in noncommutative geometry.
Author |
: Alain Connes |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 810 |
Release |
: 2019-03-13 |
ISBN-10 |
: 9781470450458 |
ISBN-13 |
: 1470450453 |
Rating |
: 4/5 (58 Downloads) |
Synopsis Noncommutative Geometry, Quantum Fields and Motives by : Alain Connes
The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.
Author |
: Y. Manin |
Publisher |
: Princeton University Press |
Total Pages |
: 173 |
Release |
: 2014-07-14 |
ISBN-10 |
: 9781400862511 |
ISBN-13 |
: 1400862515 |
Rating |
: 4/5 (11 Downloads) |
Synopsis Topics in Non-Commutative Geometry by : Y. Manin
There is a well-known correspondence between the objects of algebra and geometry: a space gives rise to a function algebra; a vector bundle over the space corresponds to a projective module over this algebra; cohomology can be read off the de Rham complex; and so on. In this book Yuri Manin addresses a variety of instances in which the application of commutative algebra cannot be used to describe geometric objects, emphasizing the recent upsurge of activity in studying noncommutative rings as if they were function rings on "noncommutative spaces." Manin begins by summarizing and giving examples of some of the ideas that led to the new concepts of noncommutative geometry, such as Connes' noncommutative de Rham complex, supergeometry, and quantum groups. He then discusses supersymmetric algebraic curves that arose in connection with superstring theory; examines superhomogeneous spaces, their Schubert cells, and superanalogues of Weyl groups; and provides an introduction to quantum groups. This book is intended for mathematicians and physicists with some background in Lie groups and complex geometry. Originally published in 1991. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Author |
: Alain Connes |
Publisher |
: Springer |
Total Pages |
: 364 |
Release |
: 2003-12-15 |
ISBN-10 |
: 9783540397021 |
ISBN-13 |
: 3540397027 |
Rating |
: 4/5 (21 Downloads) |
Synopsis Noncommutative Geometry by : Alain Connes
Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.
Author |
: Anatoli Klimyk |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 568 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783642608964 |
ISBN-13 |
: 3642608965 |
Rating |
: 4/5 (64 Downloads) |
Synopsis Quantum Groups and Their Representations by : Anatoli Klimyk
This book start with an introduction to quantum groups for the beginner and continues as a textbook for graduate students in physics and in mathematics. It can also be used as a reference by more advanced readers. The authors cover a large but well-chosen variety of subjects from the theory of quantum groups (quantized universal enveloping algebras, quantized algebras of functions) and q-deformed algebras (q-oscillator algebras), their representations and corepresentations, and noncommutative differential calculus. The book is written with potential applications in physics and mathematics in mind. The basic quantum groups and quantum algebras and their representations are given in detail and accompanied by explicit formulas. A number of topics and results from the more advanced general theory are developed and discussed.
Author |
: I︠U︡. I. Manin |
Publisher |
: |
Total Pages |
: 112 |
Release |
: 1988 |
ISBN-10 |
: UOM:39015015696514 |
ISBN-13 |
: |
Rating |
: 4/5 (14 Downloads) |
Synopsis Quantum Groups and Non-commutative Geometry by : I︠U︡. I. Manin
Author |
: Zbigniew Semadeni |
Publisher |
: |
Total Pages |
: 594 |
Release |
: 1971 |
ISBN-10 |
: UOM:39015049297099 |
ISBN-13 |
: |
Rating |
: 4/5 (99 Downloads) |
Synopsis Banach Spaces of Continuous Functions by : Zbigniew Semadeni
Author |
: Vincent Rivasseau |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 228 |
Release |
: 2007-12-22 |
ISBN-10 |
: 9783764385224 |
ISBN-13 |
: 3764385227 |
Rating |
: 4/5 (24 Downloads) |
Synopsis Quantum Spaces by : Vincent Rivasseau
This book confirms noncommutative geometry as an increasingly useful tool for the description of intricate condensed matter phenomena. It describes the striking progress recently made in gathering all the interactions and fields of the standard model into a non-commutative geometry on a simple internal space. Coverage also details the very recent technique of renormalization of quantum field theories on non-commutative space-time.
Author |
: Giovanni Landi |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 216 |
Release |
: 2003-07-01 |
ISBN-10 |
: 9783540149491 |
ISBN-13 |
: 354014949X |
Rating |
: 4/5 (91 Downloads) |
Synopsis An Introduction to Noncommutative Spaces and Their Geometries by : Giovanni Landi
These lecture notes are an introduction to several ideas and applications of noncommutative geometry. It starts with a not necessarily commutative but associative algebra which is thought of as the algebra of functions on some 'virtual noncommutative space'. Attention is switched from spaces, which in general do not even exist, to algebras of functions. In these notes, particular emphasis is put on seeing noncommutative spaces as concrete spaces, namely as a collection of points with a topology. The necessary mathematical tools are presented in a systematic and accessible way and include among other things, C'*-algebras, module theory and K-theory, spectral calculus, forms and connection theory. Application to Yang--Mills, fermionic, and gravity models are described. Also the spectral action and the related invariance under automorphism of the algebra is illustrated. Some recent work on noncommutative lattices is presented. These lattices arose as topologically nontrivial approximations to 'contuinuum' topological spaces. They have been used to construct quantum-mechanical and field-theory models, alternative models to lattice gauge theory, with nontrivial topological content. This book will be essential to physicists and mathematicians with an interest in noncommutative geometry and its uses in physics.