Noncommutative Geometry
Download Noncommutative Geometry full books in PDF, epub, and Kindle. Read online free Noncommutative Geometry ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Alain Connes |
Publisher |
: Springer |
Total Pages |
: 364 |
Release |
: 2003-12-15 |
ISBN-10 |
: 9783540397021 |
ISBN-13 |
: 3540397027 |
Rating |
: 4/5 (21 Downloads) |
Synopsis Noncommutative Geometry by : Alain Connes
Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.
Author |
: Caterina Consani |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 374 |
Release |
: 2007-12-18 |
ISBN-10 |
: 9783834803528 |
ISBN-13 |
: 3834803529 |
Rating |
: 4/5 (28 Downloads) |
Synopsis Noncommutative Geometry and Number Theory by : Caterina Consani
In recent years, number theory and arithmetic geometry have been enriched by new techniques from noncommutative geometry, operator algebras, dynamical systems, and K-Theory. This volume collects and presents up-to-date research topics in arithmetic and noncommutative geometry and ideas from physics that point to possible new connections between the fields of number theory, algebraic geometry and noncommutative geometry. The articles collected in this volume present new noncommutative geometry perspectives on classical topics of number theory and arithmetic such as modular forms, class field theory, the theory of reductive p-adic groups, Shimura varieties, the local L-factors of arithmetic varieties. They also show how arithmetic appears naturally in noncommutative geometry and in physics, in the residues of Feynman graphs, in the properties of noncommutative tori, and in the quantum Hall effect.
Author |
: Ali Chamseddine |
Publisher |
: Springer Nature |
Total Pages |
: 753 |
Release |
: 2020-01-13 |
ISBN-10 |
: 9783030295974 |
ISBN-13 |
: 3030295974 |
Rating |
: 4/5 (74 Downloads) |
Synopsis Advances in Noncommutative Geometry by : Ali Chamseddine
This authoritative volume in honor of Alain Connes, the foremost architect of Noncommutative Geometry, presents the state-of-the art in the subject. The book features an amalgam of invited survey and research papers that will no doubt be accessed, read, and referred to, for several decades to come. The pertinence and potency of new concepts and methods are concretely illustrated in each contribution. Much of the content is a direct outgrowth of the Noncommutative Geometry conference, held March 23–April 7, 2017, in Shanghai, China. The conference covered the latest research and future areas of potential exploration surrounding topology and physics, number theory, as well as index theory and its ramifications in geometry.
Author |
: Walter D. van Suijlekom |
Publisher |
: Springer |
Total Pages |
: 246 |
Release |
: 2014-07-21 |
ISBN-10 |
: 9789401791625 |
ISBN-13 |
: 9401791627 |
Rating |
: 4/5 (25 Downloads) |
Synopsis Noncommutative Geometry and Particle Physics by : Walter D. van Suijlekom
This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light” approach to noncommutative geometry. We then proceed with the general framework by defining and analyzing noncommutative spin manifolds and deriving some main results on them, such as the local index formula. In the second part, we show how noncommutative spin manifolds naturally give rise to gauge theories, applying this principle to specific examples. We subsequently geometrically derive abelian and non-abelian Yang-Mills gauge theories, and eventually the full Standard Model of particle physics, and conclude by explaining how noncommutative geometry might indicate how to proceed beyond the Standard Model.
Author |
: Jose M. Gracia-Bondia |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 692 |
Release |
: 2013-11-27 |
ISBN-10 |
: 9781461200055 |
ISBN-13 |
: 1461200059 |
Rating |
: 4/5 (55 Downloads) |
Synopsis Elements of Noncommutative Geometry by : Jose M. Gracia-Bondia
Author |
: Florian Scheck |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 352 |
Release |
: 2002-11-26 |
ISBN-10 |
: 9783540440710 |
ISBN-13 |
: 3540440712 |
Rating |
: 4/5 (10 Downloads) |
Synopsis Noncommutative Geometry and the Standard Model of Elementary Particle Physics by : Florian Scheck
The outcome of a close collaboration between mathematicians and mathematical physicists, these Lecture Notes present the foundations of A. Connes noncommutative geometry, as well as its applications in particular to the field of theoretical particle physics. The coherent and systematic approach makes this book useful for experienced researchers and postgraduate students alike.
Author |
: Joseph C. Várilly |
Publisher |
: European Mathematical Society |
Total Pages |
: 134 |
Release |
: 2006 |
ISBN-10 |
: 3037190248 |
ISBN-13 |
: 9783037190241 |
Rating |
: 4/5 (48 Downloads) |
Synopsis An Introduction to Noncommutative Geometry by : Joseph C. Várilly
Noncommutative geometry, inspired by quantum physics, describes singular spaces by their noncommutative coordinate algebras and metric structures by Dirac-like operators. Such metric geometries are described mathematically by Connes' theory of spectral triples. These lectures, delivered at an EMS Summer School on noncommutative geometry and its applications, provide an overview of spectral triples based on examples. This introduction is aimed at graduate students of both mathematics and theoretical physics. It deals with Dirac operators on spin manifolds, noncommutative tori, Moyal quantization and tangent groupoids, action functionals, and isospectral deformations. The structural framework is the concept of a noncommutative spin geometry; the conditions on spectral triples which determine this concept are developed in detail. The emphasis throughout is on gaining understanding by computing the details of specific examples. The book provides a middle ground between a comprehensive text and a narrowly focused research monograph. It is intended for self-study, enabling the reader to gain access to the essentials of noncommutative geometry. New features since the original course are an expanded bibliography and a survey of more recent examples and applications of spectral triples.
Author |
: J. Madore |
Publisher |
: Cambridge University Press |
Total Pages |
: 381 |
Release |
: 1999-06-24 |
ISBN-10 |
: 9780521659918 |
ISBN-13 |
: 0521659914 |
Rating |
: 4/5 (18 Downloads) |
Synopsis An Introduction to Noncommutative Differential Geometry and Its Physical Applications by : J. Madore
A thoroughly revised introduction to non-commutative geometry.
Author |
: Y. Manin |
Publisher |
: Princeton University Press |
Total Pages |
: 173 |
Release |
: 2014-07-14 |
ISBN-10 |
: 9781400862511 |
ISBN-13 |
: 1400862515 |
Rating |
: 4/5 (11 Downloads) |
Synopsis Topics in Non-Commutative Geometry by : Y. Manin
There is a well-known correspondence between the objects of algebra and geometry: a space gives rise to a function algebra; a vector bundle over the space corresponds to a projective module over this algebra; cohomology can be read off the de Rham complex; and so on. In this book Yuri Manin addresses a variety of instances in which the application of commutative algebra cannot be used to describe geometric objects, emphasizing the recent upsurge of activity in studying noncommutative rings as if they were function rings on "noncommutative spaces." Manin begins by summarizing and giving examples of some of the ideas that led to the new concepts of noncommutative geometry, such as Connes' noncommutative de Rham complex, supergeometry, and quantum groups. He then discusses supersymmetric algebraic curves that arose in connection with superstring theory; examines superhomogeneous spaces, their Schubert cells, and superanalogues of Weyl groups; and provides an introduction to quantum groups. This book is intended for mathematicians and physicists with some background in Lie groups and complex geometry. Originally published in 1991. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Author |
: Lieven Le Bruyn |
Publisher |
: CRC Press |
Total Pages |
: 590 |
Release |
: 2007-08-24 |
ISBN-10 |
: 9781420064230 |
ISBN-13 |
: 1420064231 |
Rating |
: 4/5 (30 Downloads) |
Synopsis Noncommutative Geometry and Cayley-smooth Orders by : Lieven Le Bruyn
Noncommutative Geometry and Cayley-smooth Orders explains the theory of Cayley-smooth orders in central simple algebras over function fields of varieties. In particular, the book describes the etale local structure of such orders as well as their central singularities and finite dimensional representations. After an introduction to partial d