Quantum Dot Lasers

Quantum Dot Lasers
Author :
Publisher :
Total Pages : 306
Release :
ISBN-10 : 0198526792
ISBN-13 : 9780198526797
Rating : 4/5 (92 Downloads)

Synopsis Quantum Dot Lasers by : Victor Mikhailovich Ustinov

The book addresses issues associated with physics and technology of injection lasers based on self-organized quantum dots. Fundamental and technological aspects of quantum dot edge-emitting lasers and VCSELs, their current status and future prospects are summarized and reviewed. Basic principles of QD formation using self-organization phenomena are reviewed. Structural and optical properties of self-organized QDs are considered with a number of examples in different material systems. Recent achievements in controlling the QD properties including the effects of vertical stacking, changing the matrix bandgap and the surface density of QDs are reviewed. The authors focus on the use of self-organized quantum dots in laser structures, fabrication and characterization of edge and surface emitting diode lasers, their properties and optimization with special attention paid to the relationship between structural and electronic properties of QDs and laser characteristics. The threshold and power characteristics of the state-of-the-art QD lasers are demonstrated. Issues related to the long-wavelength (1.3-mm) lasers on a GaAs substrate are also addressed and recent results on InGaAsN-based diode lasers presented for the purpose of comparison.

Quantum Well Lasers

Quantum Well Lasers
Author :
Publisher : Elsevier
Total Pages : 522
Release :
ISBN-10 : 9780080515588
ISBN-13 : 0080515584
Rating : 4/5 (88 Downloads)

Synopsis Quantum Well Lasers by : Peter S. Zory Jr.

This book provides the information necessary for the reader to achieve a thorough understanding of all aspects of QW lasers - from the basic mechanism of optical gain, through the current technolgoical state of the art, to the future technologies of quantum wires and quantum dots. In view of the growing importance of QW lasers, this book should be read by all those with an active interest in laser science and technology, from the advanced student to the experienced laser scientist.* The first comprehensive book-length treatment of quantum well lasers* Provides a detailed treatment of quantum well laser basics* Covers strained quantum well lasers* Explores the different state-of-the-art quantum well laser types* Provides key information on future laser technologies

Dynamics of Quantum Dot Lasers

Dynamics of Quantum Dot Lasers
Author :
Publisher : Springer Science & Business Media
Total Pages : 301
Release :
ISBN-10 : 9783319037868
ISBN-13 : 3319037862
Rating : 4/5 (68 Downloads)

Synopsis Dynamics of Quantum Dot Lasers by : Christian Otto

This thesis deals with the dynamics of state-of-the-art nanophotonic semiconductor structures, providing essential information on fundamental aspects of nonlinear dynamical systems on the one hand, and technological applications in modern telecommunication on the other. Three different complex laser structures are considered in detail: (i) a quantum-dot-based semiconductor laser under optical injection from a master laser, (ii) a quantum-dot laser with optical feedback from an external resonator, and (iii) a passively mode-locked quantum-well semiconductor laser with saturable absorber under optical feedback from an external resonator. Using a broad spectrum of methods, both numerical and analytical, this work achieves new fundamental insights into the interplay of microscopically based nonlinear laser dynamics and optical perturbations by delayed feedback and injection.

Ultrafast Lasers Based on Quantum Dot Structures

Ultrafast Lasers Based on Quantum Dot Structures
Author :
Publisher : John Wiley & Sons
Total Pages : 243
Release :
ISBN-10 : 9783527634491
ISBN-13 : 3527634495
Rating : 4/5 (91 Downloads)

Synopsis Ultrafast Lasers Based on Quantum Dot Structures by : Edik U. Rafailov

In this monograph, the authors address the physics and engineering together with the latest achievements of efficient and compact ultrafast lasers based on novel quantum-dot structures and devices. Their approach encompasses a broad range of laser systems, while taking into consideration not only the physical and experimental aspects but also the much needed modeling tools, thus providing a holistic understanding of this hot topic.

Reliability of Semiconductor Lasers and Optoelectronic Devices

Reliability of Semiconductor Lasers and Optoelectronic Devices
Author :
Publisher : Woodhead Publishing
Total Pages : 336
Release :
ISBN-10 : 9780128192559
ISBN-13 : 0128192550
Rating : 4/5 (59 Downloads)

Synopsis Reliability of Semiconductor Lasers and Optoelectronic Devices by : Robert Herrick

Reliability of Semiconductor Lasers and Optoelectronic Devices simplifies complex concepts of optoelectronics reliability with approachable introductory chapters and a focus on real-world applications. This book provides a brief look at the fundamentals of laser diodes, introduces reliability qualification, and then presents real-world case studies discussing the principles of reliability and what occurs when these rules are broken. Then this book comprehensively looks at optoelectronics devices and the defects that cause premature failure in them and how to control those defects. Key materials and devices are reviewed including silicon photonics, vertical-cavity surface-emitting lasers (VCSELs), InGaN LEDs and lasers, and AlGaN LEDs, covering the majority of optoelectronic devices that we use in our everyday lives, powering the Internet, telecommunication, solid-state lighting, illuminators, and many other applications. This book features contributions from experts in industry and academia working in these areas and includes numerous practical examples and case studies.This book is suitable for new entrants to the field of optoelectronics working in R&D. - Includes case studies and numerous examples showing best practices and common mistakes affecting optoelectronics reliability written by experts working in the industry - Features the first wide-ranging and comprehensive overview of fiber optics reliability engineering, covering all elements of the practice from building a reliability laboratory, qualifying new products, to improving reliability on mature products - Provides a look at the reliability issues and failure mechanisms for silicon photonics, VCSELs, InGaN LEDs and lasers, AIGaN LEDs, and more

Quantum Dot Devices

Quantum Dot Devices
Author :
Publisher : Springer Science & Business Media
Total Pages : 375
Release :
ISBN-10 : 9781461435709
ISBN-13 : 1461435706
Rating : 4/5 (09 Downloads)

Synopsis Quantum Dot Devices by : Zhiming M. Wang

Quantum dots as nanomaterials have been extensively investigated in the past several decades from growth to characterization to applications. As the basis of future developments in the field, this book collects a series of state-of-the-art chapters on the current status of quantum dot devices and how these devices take advantage of quantum features. Written by 56 leading experts from 14 countries, the chapters cover numerous quantum dot applications, including lasers, LEDs, detectors, amplifiers, switches, transistors, and solar cells. Quantum Dot Devices is appropriate for researchers of all levels of experience with an interest in epitaxial and/or colloidal quantum dots. It provides the beginner with the necessary overview of this exciting field and those more experienced with a comprehensive reference source.

The Physics and Engineering of Compact Quantum Dot-based Lasers for Biophotonics

The Physics and Engineering of Compact Quantum Dot-based Lasers for Biophotonics
Author :
Publisher : John Wiley & Sons
Total Pages : 349
Release :
ISBN-10 : 9783527665600
ISBN-13 : 3527665609
Rating : 4/5 (00 Downloads)

Synopsis The Physics and Engineering of Compact Quantum Dot-based Lasers for Biophotonics by : Edik U. Rafailov

Written by a team of European experts in the field, this book addresses the physics, the principles, the engineering methods, and the latest developments of efficient and compact ultrafast lasers based on novel quantum-dot structures and devices, as well as their applications in biophotonics. Recommended reading for physicists, engineers, students and lecturers in the fields of photonics, optics, laser physics, optoelectronics, and biophotonics.

Nonlinear Laser Dynamics

Nonlinear Laser Dynamics
Author :
Publisher : John Wiley & Sons
Total Pages : 412
Release :
ISBN-10 : 9783527639830
ISBN-13 : 3527639837
Rating : 4/5 (30 Downloads)

Synopsis Nonlinear Laser Dynamics by : Kathy Lüdge

A distinctive discussion of the nonlinear dynamical phenomena of semiconductor lasers. The book combines recent results of quantum dot laser modeling with mathematical details and an analytic understanding of nonlinear phenomena in semiconductor lasers and points out possible applications of lasers in cryptography and chaos control. This interdisciplinary approach makes it a unique and powerful source of knowledge for anyone intending to contribute to this field of research. By presenting both experimental and theoretical results, the distinguished authors consider solitary lasers with nano-structured material, as well as integrated devices with complex feedback sections. In so doing, they address such topics as the bifurcation theory of systems with time delay, analysis of chaotic dynamics, and the modeling of quantum transport. They also address chaos-based cryptography as an example of the technical application of highly nonlinear laser systems.

Quantum Dot Lasers on Silicon

Quantum Dot Lasers on Silicon
Author :
Publisher : Springer Nature
Total Pages : 206
Release :
ISBN-10 : 9783031178276
ISBN-13 : 3031178270
Rating : 4/5 (76 Downloads)

Synopsis Quantum Dot Lasers on Silicon by : Bozhang Dong

This book provides guidelines and design rules for developing high-performance, low-cost, and energy-efficient quantum-dot (QD) lasers for silicon photonic integrated circuits (PIC), optical frequency comb generation, and quantum information systems. To this end, the nonlinear properties and dynamics of QD lasers on silicon are investigated in depth by both theoretical analysis and experiment. This book aims at addressing four issues encountered in developing silicon PIC: 1) The instability of laser emission caused by the chip-scale back-reflection. During photonic integration, the chip-scale back-reflection is usually responsible for the generation of severe instability (i.e., coherence collapse) from the on-chip source. As a consequence, the transmission performance of the chip could be largely degraded. To overcome this issue, we investigate the nonlinear properties and dynamics of QD laser on Si in this book to understand how can it be applied to isolator-free photonic integration in which the expensive optical isolator can be avoided. Results show that the QD laser exhibits a high degree of tolerance for chip-scale back-reflections in absence of any instability, which is a promising solution for isolator-free applications. 2) The degradation of laser performance at a high operating temperature. In this era of Internet-of-Thing (IoT), about 40% of energy is consumed for cooling in the data center. In this context, it is important to develop a high-temperature continuous-wave (CW) emitted laser source. In this book, we introduce a single-mode distributed feedback (DFB) QD laser with a design of optical wavelength detuning (OWD). By taking advantage of the OWD technique and the high-performance QD with high thermal stability, all the static and dynamical performances of the QD device are improved when the operating temperature is high. This study paves the way for developing uncooled and isolator-free PIC. 3) The limited phase noise level and optical bandwidth of the laser are the bottlenecks for further increasing the transmission capacity. To improve the transmission capacity and meet the requirement of the next generation of high-speed optical communication, we introduce the QD-based optical frequency comb (OFC) laser in this book. Benefiting from the gain broadening effect and the low-noise properties of QD, the OFC laser is realized with high optical bandwidth and low phase noise. We also provide approaches to further improve the laser performance, including the external optical feedback and the optical injection. 4) Platform with rich optical nonlinearities is highly desired by future integrated quantum technologies. In this book, we investigate the nonlinear properties and four-wave mixing (FWM) of QD laser on Si. This study reveals that the FWM efficiency of QD laser is more than ten times higher than that of quantum-well laser, which gives insight into developing a QD-based silicon platform for quantum states of light generation. Based on the results in this book, scientists, researchers, and engineers can come up with an informed judgment in utilizing the QD laser for applications ranging from classical silicon PIC to integrated quantum technologies.

Single Quantum Dots

Single Quantum Dots
Author :
Publisher : Springer Science & Business Media
Total Pages : 370
Release :
ISBN-10 : 3540140220
ISBN-13 : 9783540140221
Rating : 4/5 (20 Downloads)

Synopsis Single Quantum Dots by : Peter Michler

Special focus is given to the optical and electronic properties of single quantum dots due to their potential applications in devices operating with single electrons and/or single photons. This includes quantum dots in electric and magnetic fields, cavity-quantum electrodynamics, nonclassical light generation, and coherent optical control of excitons.