Quadratic Forms Over Q And Galois Extensions Of Commutative Rings
Download Quadratic Forms Over Q And Galois Extensions Of Commutative Rings full books in PDF, epub, and Kindle. Read online free Quadratic Forms Over Q And Galois Extensions Of Commutative Rings ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Frank DeMeyer |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 73 |
Release |
: 1989 |
ISBN-10 |
: 9780821824573 |
ISBN-13 |
: 0821824570 |
Rating |
: 4/5 (73 Downloads) |
Synopsis Quadratic Forms Over Q and Galois Extensions of Commutative Rings by : Frank DeMeyer
The object of the first two sections of this memoir is to give explicit descriptions of both the Witt ring of the rational numbers [bold]Q and the set of abelian extensions of [bold]Q. The third presents a discussion around a particular case of the Galois cubic extension, building on the general theory.
Author |
: R. Baeza |
Publisher |
: Springer |
Total Pages |
: 204 |
Release |
: 2006-11-22 |
ISBN-10 |
: 9783540358169 |
ISBN-13 |
: 3540358161 |
Rating |
: 4/5 (69 Downloads) |
Synopsis Quadratic Forms Over Semilocal Rings by : R. Baeza
Author |
: Tsit-Yuen Lam |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 577 |
Release |
: 2005 |
ISBN-10 |
: 9780821810958 |
ISBN-13 |
: 0821810952 |
Rating |
: 4/5 (58 Downloads) |
Synopsis Introduction to Quadratic Forms over Fields by : Tsit-Yuen Lam
This new version of the author's prizewinning book, Algebraic Theory of Quadratic Forms (W. A. Benjamin, Inc., 1973), gives a modern and self-contained introduction to the theory of quadratic forms over fields of characteristic different from two. Starting with few prerequisites beyond linear algebra, the author charts an expert course from Witt's classical theory of quadratic forms, quaternion and Clifford algebras, Artin-Schreier theory of formally real fields, and structural theorems on Witt rings, to the theory of Pfister forms, function fields, and field invariants. These main developments are seamlessly interwoven with excursions into Brauer-Wall groups, local and global fields, trace forms, Galois theory, and elementary algebraic K-theory, to create a uniquely original treatment of quadratic form theory over fields. Two new chapters totaling more than 100 pages have been added to the earlier incarnation of this book to take into account some of the newer results and more recent viewpoints in the area. As is characteristic of this author's expository style, the presentation of the main material in this book is interspersed with a copious number of carefully chosen examples to illustrate the general theory. This feature, together with a rich stock of some 280 exercises for the thirteen chapters, greatly enhances the pedagogical value of this book, both as a graduate text and as a reference work for researchers in algebra, number theory, algebraic geometry, algebraic topology, and geometric topology.
Author |
: |
Publisher |
: American Mathematical Society(RI) |
Total Pages |
: 1084 |
Release |
: 1997 |
ISBN-10 |
: UCAL:B5102240 |
ISBN-13 |
: |
Rating |
: 4/5 (40 Downloads) |
Synopsis Reviews in Number Theory, 1984-96 by :
These six volumes include approximately 20,000 reviews of items in number theory that appeared in Mathematical Reviews (MR) between 1984 and 1996. This is the third such set of volumes in number theory: the first was edited by W.J. LeVeque and included reviews from 1940-1972; the second was edited by R.K. Guy and appeared in 1984.
Author |
: Michiel Hazewinkel |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 506 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9789401512374 |
ISBN-13 |
: 940151237X |
Rating |
: 4/5 (74 Downloads) |
Synopsis Encyclopaedia of Mathematics by : Michiel Hazewinkel
This ENCYCLOPAEDIA OF MA THEMA TICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.
Author |
: M. Hazewinkel |
Publisher |
: Springer |
Total Pages |
: 952 |
Release |
: 2013-11-11 |
ISBN-10 |
: 9781489937933 |
ISBN-13 |
: 1489937935 |
Rating |
: 4/5 (33 Downloads) |
Synopsis Encyclopaedia of Mathematics by : M. Hazewinkel
Author |
: Richard S. Elman |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 456 |
Release |
: 2008-07-15 |
ISBN-10 |
: 0821873229 |
ISBN-13 |
: 9780821873229 |
Rating |
: 4/5 (29 Downloads) |
Synopsis The Algebraic and Geometric Theory of Quadratic Forms by : Richard S. Elman
This book is a comprehensive study of the algebraic theory of quadratic forms, from classical theory to recent developments, including results and proofs that have never been published. The book is written from the viewpoint of algebraic geometry and includes the theory of quadratic forms over fields of characteristic two, with proofs that are characteristic independent whenever possible. For some results both classical and geometric proofs are given. Part I includes classical algebraic theory of quadratic and bilinear forms and answers many questions that have been raised in the early stages of the development of the theory. Assuming only a basic course in algebraic geometry, Part II presents the necessary additional topics from algebraic geometry including the theory of Chow groups, Chow motives, and Steenrod operations. These topics are used in Part III to develop a modern geometric theory of quadratic forms.
Author |
: N. Bourbaki |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 654 |
Release |
: 1998-08-03 |
ISBN-10 |
: 9783540642398 |
ISBN-13 |
: 3540642390 |
Rating |
: 4/5 (98 Downloads) |
Synopsis Commutative Algebra by : N. Bourbaki
This is the softcover reprint of the English translation of 1972 (available from Springer since 1989) of the first 7 chapters of Bourbaki's 'Algèbre commutative'. It provides a very complete treatment of commutative algebra, enabling the reader to go further and study algebraic or arithmetic geometry. The first 3 chapters treat in succession the concepts of flatness, localization and completions (in the general setting of graduations and filtrations). Chapter 4 studies associated prime ideals and the primary decomposition. Chapter 5 deals with integers, integral closures and finitely generated algebras over a field (including the Nullstellensatz). Chapter 6 studies valuation (of any rank), and the last chapter focuses on divisors (Krull, Dedekind, or factorial domains) with a final section on modules over integrally closed Noetherian domains, not usually found in textbooks. Useful exercises appear at the ends of the chapters.
Author |
: Luciano Boi |
Publisher |
: JHU Press |
Total Pages |
: 233 |
Release |
: 2011-10-28 |
ISBN-10 |
: 9781421402475 |
ISBN-13 |
: 1421402475 |
Rating |
: 4/5 (75 Downloads) |
Synopsis The Quantum Vacuum by : Luciano Boi
A vacuum, classically understood, contains nothing. The quantum vacuum, on the other hand, is a seething cauldron of nothingness: particle pairs going in and out of existence continuously and rapidly while exerting influence over an enormous range of scales. Acclaimed mathematical physicist and natural philosopher Luciano Boi expounds the quantum vacuum, exploring the meaning of nothingness and its relationship with physical reality. Boi first provides a deep analysis of the interaction between geometry and physics at the quantum level. He next describes the relationship between the microscopic and macroscopic structures of the world. In so doing, Boi sheds light on the very nature of the universe, stressing in an original and profound way the relationship between quantum geometry and the internal symmetries underlying the behavior of matter and the interactions of forces. Beyond the physics and mathematics of the quantum vacuum, Boi offers a profoundly philosophical interpretation of the concept. Plato and Aristotle did not believe a vacuum was possible. How could nothing be something, they asked? Boi traces the evolution of the quantum vacuum from an abstract concept in ancient Greece to its fundamental role in quantum field theory and string theory in modern times. The quantum vacuum is a complex entity, one essential to understanding some of the most intriguing issues in twentieth-century physics, including cosmic singularity, dark matter and energy, and the existence of the Higgs boson particle. Boi explains with simple clarity the relevant theories and fundamental concepts of the quantum vacuum. Theoretical, mathematical, and particle physicists, as well as researchers and students of the history and philosophy of physics, will find The Quantum Vacuum to be a stimulating and engaging primer on the topic.
Author |
: |
Publisher |
: |
Total Pages |
: 418 |
Release |
: 2014 |
ISBN-10 |
: UCSD:31822037860426 |
ISBN-13 |
: |
Rating |
: 4/5 (26 Downloads) |
Synopsis Acta Arithmetica by :