The Ultimate Challenge

The Ultimate Challenge
Author :
Publisher : American Mathematical Society
Total Pages : 360
Release :
ISBN-10 : 9781470472894
ISBN-13 : 1470472899
Rating : 4/5 (94 Downloads)

Synopsis The Ultimate Challenge by : Jeffrey C. Lagarias

The $3x+1$ problem, or Collatz problem, concerns the following seemingly innocent arithmetic procedure applied to integers: If an integer $x$ is odd then “multiply by three and add one”, while if it is even then “divide by two”. The $3x+1$ problem asks whether, starting from any positive integer, repeating this procedure over and over will eventually reach the number 1. Despite its simple appearance, this problem is unsolved. Generalizations of the problem are known to be undecidable, and the problem itself is believed to be extraordinarily difficult. This book reports on what is known on this problem. It consists of a collection of papers, which can be read independently of each other. The book begins with two introductory papers, one giving an overview and current status, and the second giving history and basic results on the problem. These are followed by three survey papers on the problem, relating it to number theory and dynamical systems, to Markov chains and ergodic theory, and to logic and the theory of computation. The next paper presents results on probabilistic models for behavior of the iteration. This is followed by a paper giving the latest computational results on the problem, which verify its truth for $x < 5.4 cdot 10^{18}$. The book also reprints six early papers on the problem and related questions, by L. Collatz, J. H. Conway, H. S. M. Coxeter, C. J. Everett, and R. K. Guy, each with editorial commentary. The book concludes with an annotated bibliography of work on the problem up to the year 2000.

Research Schools on Number Theory in India

Research Schools on Number Theory in India
Author :
Publisher : Springer Nature
Total Pages : 187
Release :
ISBN-10 : 9789811596209
ISBN-13 : 9811596204
Rating : 4/5 (09 Downloads)

Synopsis Research Schools on Number Theory in India by : Purabi Mukherji

This book is an attempt to describe the gradual development of the major schools of research on number theory in South India, Punjab, Mumbai, Bengal, and Bihar—including the establishment of Tata Institute of Fundamental Research (TIFR), Mumbai, a landmark event in the history of research of number theory in India. Research on number theory in India during modern times started with the advent of the iconic genius Srinivasa Ramanujan, inspiring mathematicians around the world. This book discusses the national and international impact of the research made by Indian number theorists. It also includes a carefully compiled, comprehensive bibliography of major 20th century Indian number theorists making this book important from the standpoint of historic documentation and a valuable resource for researchers of the field for their literature survey. This book also briefly discusses the importance of number theory in the modern world of mathematics, including applications of the results developed by indigenous number theorists in practical fields. Since the book is written from the viewpoint of the history of science, technical jargon and mathematical expressions have been avoided as much as possible.

A Panorama of Discrepancy Theory

A Panorama of Discrepancy Theory
Author :
Publisher : Springer
Total Pages : 708
Release :
ISBN-10 : 9783319046969
ISBN-13 : 3319046969
Rating : 4/5 (69 Downloads)

Synopsis A Panorama of Discrepancy Theory by : William Chen

This is the first work on Discrepancy Theory to show the present variety of points of view and applications covering the areas Classical and Geometric Discrepancy Theory, Combinatorial Discrepancy Theory and Applications and Constructions. It consists of several chapters, written by experts in their respective fields and focusing on the different aspects of the theory. Discrepancy theory concerns the problem of replacing a continuous object with a discrete sampling and is currently located at the crossroads of number theory, combinatorics, Fourier analysis, algorithms and complexity, probability theory and numerical analysis. This book presents an invitation to researchers and students to explore the different methods and is meant to motivate interdisciplinary research.

Algebra, Arithmetic, and Geometry

Algebra, Arithmetic, and Geometry
Author :
Publisher : Springer Science & Business Media
Total Pages : 723
Release :
ISBN-10 : 9780817647452
ISBN-13 : 0817647457
Rating : 4/5 (52 Downloads)

Synopsis Algebra, Arithmetic, and Geometry by : Yuri Tschinkel

EMAlgebra, Arithmetic, and Geometry: In Honor of Yu. I. ManinEM consists of invited expository and research articles on new developments arising from Manin’s outstanding contributions to mathematics.

Analytic Number Theory

Analytic Number Theory
Author :
Publisher : American Mathematical Soc.
Total Pages : 615
Release :
ISBN-10 : 9781470467708
ISBN-13 : 1470467704
Rating : 4/5 (08 Downloads)

Synopsis Analytic Number Theory by : Henryk Iwaniec

Analytic Number Theory distinguishes itself by the variety of tools it uses to establish results. One of the primary attractions of this theory is its vast diversity of concepts and methods. The main goals of this book are to show the scope of the theory, both in classical and modern directions, and to exhibit its wealth and prospects, beautiful theorems, and powerful techniques. The book is written with graduate students in mind, and the authors nicely balance clarity, completeness, and generality. The exercises in each section serve dual purposes, some intended to improve readers' understanding of the subject and others providing additional information. Formal prerequisites for the major part of the book do not go beyond calculus, complex analysis, integration, and Fourier series and integrals. In later chapters automorphic forms become important, with much of the necessary information about them included in two survey chapters.

Analytic Number Theory:The Halberstam Festschrift 2

Analytic Number Theory:The Halberstam Festschrift 2
Author :
Publisher : Springer Science & Business Media
Total Pages : 464
Release :
ISBN-10 : 0817639330
ISBN-13 : 9780817639334
Rating : 4/5 (30 Downloads)

Synopsis Analytic Number Theory:The Halberstam Festschrift 2 by : Bruce C. Berndt

The second of two volumes presenting papers from an international conference on analytic number theory. The two volumes contain 50 papers, with an emphasis on topics such as sieves, related combinatorial aspects, multiplicative number theory, additive number theory, and Riemann zeta-function.

Lacunary Polynomials Over Finite Fields

Lacunary Polynomials Over Finite Fields
Author :
Publisher : Elsevier
Total Pages : 268
Release :
ISBN-10 : 9781483257839
ISBN-13 : 1483257835
Rating : 4/5 (39 Downloads)

Synopsis Lacunary Polynomials Over Finite Fields by : L. Rédei

Lacunary Polynomials Over Finite Fields focuses on reducible lacunary polynomials over finite fields, as well as stem polynomials, differential equations, and gaussian sums. The monograph first tackles preliminaries and formulation of Problems I, II, and III, including some basic concepts and notations, invariants of polynomials, stem polynomials, fully reducible polynomials, and polynomials with a restricted range. The text then takes a look at Problem I and reduction of Problem II to Problem III. Topics include reduction of the marginal case of Problem II to that of Problem III, proposition on power series, proposition on polynomials, and preliminary remarks on polynomial and differential equations. The publication ponders on Problem III and applications. Topics include homogeneous elementary symmetric systems of equations in finite fields; divisibility maximum properties of the gaussian sums and related questions; common representative systems of a finite abelian group with respect to given subgroups; and difference quotient of functions in finite fields. The monograph also reviews certain families of linear mappings in finite fields, appendix on the degenerate solutions of Problem II, a lemma on the greatest common divisor of polynomials with common gap, and two group-theoretical propositions. The text is a dependable reference for mathematicians and researchers interested in the study of reducible lacunary polynomials over finite fields.