Partial Differential Equations of Mathematical Physics

Partial Differential Equations of Mathematical Physics
Author :
Publisher : Courier Corporation
Total Pages : 452
Release :
ISBN-10 : 048665964X
ISBN-13 : 9780486659640
Rating : 4/5 (4X Downloads)

Synopsis Partial Differential Equations of Mathematical Physics by : S. L. Sobolev

This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.

Mathematical Physics with Partial Differential Equations

Mathematical Physics with Partial Differential Equations
Author :
Publisher : Academic Press
Total Pages : 431
Release :
ISBN-10 : 9780123869111
ISBN-13 : 0123869110
Rating : 4/5 (11 Downloads)

Synopsis Mathematical Physics with Partial Differential Equations by : James Kirkwood

Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.

Partial Differential Equations in Classical Mathematical Physics

Partial Differential Equations in Classical Mathematical Physics
Author :
Publisher : Cambridge University Press
Total Pages : 704
Release :
ISBN-10 : 0521558468
ISBN-13 : 9780521558464
Rating : 4/5 (68 Downloads)

Synopsis Partial Differential Equations in Classical Mathematical Physics by : Isaak Rubinstein

The unique feature of this book is that it considers the theory of partial differential equations in mathematical physics as the language of continuous processes, that is, as an interdisciplinary science that treats the hierarchy of mathematical phenomena as reflections of their physical counterparts. Special attention is drawn to tracing the development of these mathematical phenomena in different natural sciences, with examples drawn from continuum mechanics, electrodynamics, transport phenomena, thermodynamics, and chemical kinetics. At the same time, the authors trace the interrelation between the different types of problems - elliptic, parabolic, and hyperbolic - as the mathematical counterparts of stationary and evolutionary processes. This combination of mathematical comprehensiveness and natural scientific motivation represents a step forward in the presentation of the classical theory of PDEs, one that will be appreciated by both students and researchers alike.

Partial Differential Equations for Mathematical Physicists

Partial Differential Equations for Mathematical Physicists
Author :
Publisher : CRC Press
Total Pages : 227
Release :
ISBN-10 : 9781000300819
ISBN-13 : 1000300811
Rating : 4/5 (19 Downloads)

Synopsis Partial Differential Equations for Mathematical Physicists by : Bijan Kumar Bagchi

Partial Differential Equations for Mathematical Physicists is intended for graduate students, researchers of theoretical physics and applied mathematics, and professionals who want to take a course in partial differential equations. This book offers the essentials of the subject with the prerequisite being only an elementary knowledge of introductory calculus, ordinary differential equations, and certain aspects of classical mechanics. We have stressed more the methodologies of partial differential equations and how they can be implemented as tools for extracting their solutions rather than dwelling on the foundational aspects. After covering some basic material, the book proceeds to focus mostly on the three main types of second order linear equations, namely those belonging to the elliptic, hyperbolic, and parabolic classes. For such equations a detailed treatment is given of the derivation of Green's functions, and of the roles of characteristics and techniques required in handling the solutions with the expected amount of rigor. In this regard we have discussed at length the method of separation variables, application of Green's function technique, and employment of Fourier and Laplace's transforms. Also collected in the appendices are some useful results from the Dirac delta function, Fourier transform, and Laplace transform meant to be used as supplementary materials to the text. A good number of problems is worked out and an equally large number of exercises has been appended at the end of each chapter keeping in mind the needs of the students. It is expected that this book will provide a systematic and unitary coverage of the basics of partial differential equations. Key Features An adequate and substantive exposition of the subject. Covers a wide range of important topics. Maintains mathematical rigor throughout. Organizes materials in a self-contained way with each chapter ending with a summary. Contains a large number of worked out problems.

Partial Differential Equations of Mathematical Physics

Partial Differential Equations of Mathematical Physics
Author :
Publisher : Courier Dover Publications
Total Pages : 465
Release :
ISBN-10 : 9780486805153
ISBN-13 : 0486805158
Rating : 4/5 (53 Downloads)

Synopsis Partial Differential Equations of Mathematical Physics by : Arthur Godon Webster

A classic treatise on partial differential equations, this comprehensive work by one of America's greatest early mathematical physicists covers the basic method, theory, and application of partial differential equations. In addition to its value as an introductory and supplementary text for students, this volume constitutes a fine reference for mathematicians, physicists, and research engineers. Detailed coverage includes Fourier series; integral and elliptic equations; spherical, cylindrical, and ellipsoidal harmonics; Cauchy's method; boundary problems; the Riemann-Volterra method; and many other basic topics. The self-contained treatment fully develops the theory and application of partial differential equations to virtually every relevant field: vibration, elasticity, potential theory, the theory of sound, wave propagation, heat conduction, and many more. A helpful Appendix provides background on Jacobians, double limits, uniform convergence, definite integrals, complex variables, and linear differential equations.

Mathematical Methods

Mathematical Methods
Author :
Publisher : Springer Science & Business Media
Total Pages : 673
Release :
ISBN-10 : 9780387215624
ISBN-13 : 038721562X
Rating : 4/5 (24 Downloads)

Synopsis Mathematical Methods by : Sadri Hassani

Intended to follow the usual introductory physics courses, this book contains many original, lucid and relevant examples from the physical sciences, problems at the ends of chapters, and boxes to emphasize important concepts to help guide students through the material.

Mathematical Physics

Mathematical Physics
Author :
Publisher : Springer Science & Business Media
Total Pages : 1052
Release :
ISBN-10 : 0387985794
ISBN-13 : 9780387985794
Rating : 4/5 (94 Downloads)

Synopsis Mathematical Physics by : Sadri Hassani

For physics students interested in the mathematics they use, and for math students interested in seeing how some of the ideas of their discipline find realization in an applied setting. The presentation strikes a balance between formalism and application, between abstract and concrete. The interconnections among the various topics are clarified both by the use of vector spaces as a central unifying theme, recurring throughout the book, and by putting ideas into their historical context. Enough of the essential formalism is included to make the presentation self-contained.

Mathematical Methods in Physics

Mathematical Methods in Physics
Author :
Publisher : CRC Press
Total Pages : 852
Release :
ISBN-10 : 9781439865163
ISBN-13 : 1439865167
Rating : 4/5 (63 Downloads)

Synopsis Mathematical Methods in Physics by : Victor Henner

This book is a text on partial differential equations (PDEs) of mathematical physics and boundary value problems, trigonometric Fourier series, and special functions. This is the core content of many courses in the fields of engineering, physics, mathematics, and applied mathematics. The accompanying software provides a laboratory environment that

Partial Differential Equations and Mathematical Physics

Partial Differential Equations and Mathematical Physics
Author :
Publisher : Springer Science & Business Media
Total Pages : 260
Release :
ISBN-10 : 0817643095
ISBN-13 : 9780817643096
Rating : 4/5 (95 Downloads)

Synopsis Partial Differential Equations and Mathematical Physics by : Kunihiko Kajitani

The 17 invited research articles in this volume, all written by leading experts in their respective fields, are dedicated to the great French mathematician Jean Leray. A wide range of topics with significant new results---detailed proofs---are presented in the areas of partial differential equations, complex analysis, and mathematical physics. Key subjects are: * Treated from the mathematical physics viewpoint: nonlinear stability of an expanding universe, the compressible Euler equation, spin groups and the Leray--Maslov index, * Linked to the Cauchy problem: an intermediate case between effective hyperbolicity and the Levi condition, global Cauchy--Kowalewski theorem in some Gevrey classes, the analytic continuation of the solution, necessary conditions for hyperbolic systems, well posedness in the Gevrey class, uniformly diagonalizable systems and reduced dimension, and monodromy of ramified Cauchy problem. Additional articles examine results on: * Local solvability for a system of partial differential operators, * The hypoellipticity of second order operators, * Differential forms and Hodge theory on analytic spaces, * Subelliptic operators and sub- Riemannian geometry. Contributors: V. Ancona, R. Beals, A. Bove, R. Camales, Y. Choquet- Bruhat, F. Colombini, M. De Gosson, S. De Gosson, M. Di Flaviano, B. Gaveau, D. Gourdin, P. Greiner, Y. Hamada, K. Kajitani, M. Mechab, K. Mizohata, V. Moncrief, N. Nakazawa, T. Nishitani, Y. Ohya, T. Okaji, S. Ouchi, S. Spagnolo, J. Vaillant, C. Wagschal, S. Wakabayashi The book is suitable as a reference text for graduate students and active researchers.