Mathematical Physics with Partial Differential Equations

Mathematical Physics with Partial Differential Equations
Author :
Publisher : Academic Press
Total Pages : 431
Release :
ISBN-10 : 9780123869111
ISBN-13 : 0123869110
Rating : 4/5 (11 Downloads)

Synopsis Mathematical Physics with Partial Differential Equations by : James Kirkwood

Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.

Partial Differential Equations of Mathematical Physics

Partial Differential Equations of Mathematical Physics
Author :
Publisher : Courier Corporation
Total Pages : 452
Release :
ISBN-10 : 048665964X
ISBN-13 : 9780486659640
Rating : 4/5 (4X Downloads)

Synopsis Partial Differential Equations of Mathematical Physics by : S. L. Sobolev

This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.

Partial Differential Equations in Classical Mathematical Physics

Partial Differential Equations in Classical Mathematical Physics
Author :
Publisher : Cambridge University Press
Total Pages : 704
Release :
ISBN-10 : 0521558468
ISBN-13 : 9780521558464
Rating : 4/5 (68 Downloads)

Synopsis Partial Differential Equations in Classical Mathematical Physics by : Isaak Rubinstein

The unique feature of this book is that it considers the theory of partial differential equations in mathematical physics as the language of continuous processes, that is, as an interdisciplinary science that treats the hierarchy of mathematical phenomena as reflections of their physical counterparts. Special attention is drawn to tracing the development of these mathematical phenomena in different natural sciences, with examples drawn from continuum mechanics, electrodynamics, transport phenomena, thermodynamics, and chemical kinetics. At the same time, the authors trace the interrelation between the different types of problems - elliptic, parabolic, and hyperbolic - as the mathematical counterparts of stationary and evolutionary processes. This combination of mathematical comprehensiveness and natural scientific motivation represents a step forward in the presentation of the classical theory of PDEs, one that will be appreciated by both students and researchers alike.

Equations of Mathematical Physics

Equations of Mathematical Physics
Author :
Publisher : Courier Corporation
Total Pages : 802
Release :
ISBN-10 : 9780486173368
ISBN-13 : 0486173364
Rating : 4/5 (68 Downloads)

Synopsis Equations of Mathematical Physics by : A. N. Tikhonov

Mathematical physics plays an important role in the study of many physical processes — hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced undergraduate- or graduate-level text considers only those problems leading to partial differential equations. Contents: I. Classification of Partial Differential Equations II. Evaluations of the Hyperbolic Type III. Equations of the Parabolic Type IV. Equations of Elliptic Type V. Wave Propagation in Space VI. Heat Conduction in Space VII. Equations of Elliptic Type (Continuation) The authors — two well-known Russian mathematicians — have focused on typical physical processes and the principal types of equations dealing with them. Special attention is paid throughout to mathematical formulation, rigorous solutions, and physical interpretation of the results obtained. Carefully chosen problems designed to promote technical skills are contained in each chapter, along with extremely useful appendixes that supply applications of solution methods described in the main text. At the end of the book, a helpful supplement discusses special functions, including spherical and cylindrical functions.

Mathematical Methods in Physics

Mathematical Methods in Physics
Author :
Publisher : CRC Press
Total Pages : 852
Release :
ISBN-10 : 9781439865163
ISBN-13 : 1439865167
Rating : 4/5 (63 Downloads)

Synopsis Mathematical Methods in Physics by : Victor Henner

This book is a text on partial differential equations (PDEs) of mathematical physics and boundary value problems, trigonometric Fourier series, and special functions. This is the core content of many courses in the fields of engineering, physics, mathematics, and applied mathematics. The accompanying software provides a laboratory environment that

Kernel Functions and Elliptic Differential Equations in Mathematical Physics

Kernel Functions and Elliptic Differential Equations in Mathematical Physics
Author :
Publisher : Courier Corporation
Total Pages : 450
Release :
ISBN-10 : 9780486445533
ISBN-13 : 0486445534
Rating : 4/5 (33 Downloads)

Synopsis Kernel Functions and Elliptic Differential Equations in Mathematical Physics by : Stefan Bergman

This text focuses on the theory of boundary value problems in partial differential equations, which plays a central role in various fields of pure and applied mathematics, theoretical physics, and engineering. Geared toward upper-level undergraduates and graduate students, it discusses a portion of the theory from a unifying point of view and provides a systematic and self-contained introduction to each branch of the applications it employs.

Partial Differential Equations and Mathematical Physics

Partial Differential Equations and Mathematical Physics
Author :
Publisher : Springer Science & Business Media
Total Pages : 260
Release :
ISBN-10 : 0817643095
ISBN-13 : 9780817643096
Rating : 4/5 (95 Downloads)

Synopsis Partial Differential Equations and Mathematical Physics by : Kunihiko Kajitani

The 17 invited research articles in this volume, all written by leading experts in their respective fields, are dedicated to the great French mathematician Jean Leray. A wide range of topics with significant new results---detailed proofs---are presented in the areas of partial differential equations, complex analysis, and mathematical physics. Key subjects are: * Treated from the mathematical physics viewpoint: nonlinear stability of an expanding universe, the compressible Euler equation, spin groups and the Leray--Maslov index, * Linked to the Cauchy problem: an intermediate case between effective hyperbolicity and the Levi condition, global Cauchy--Kowalewski theorem in some Gevrey classes, the analytic continuation of the solution, necessary conditions for hyperbolic systems, well posedness in the Gevrey class, uniformly diagonalizable systems and reduced dimension, and monodromy of ramified Cauchy problem. Additional articles examine results on: * Local solvability for a system of partial differential operators, * The hypoellipticity of second order operators, * Differential forms and Hodge theory on analytic spaces, * Subelliptic operators and sub- Riemannian geometry. Contributors: V. Ancona, R. Beals, A. Bove, R. Camales, Y. Choquet- Bruhat, F. Colombini, M. De Gosson, S. De Gosson, M. Di Flaviano, B. Gaveau, D. Gourdin, P. Greiner, Y. Hamada, K. Kajitani, M. Mechab, K. Mizohata, V. Moncrief, N. Nakazawa, T. Nishitani, Y. Ohya, T. Okaji, S. Ouchi, S. Spagnolo, J. Vaillant, C. Wagschal, S. Wakabayashi The book is suitable as a reference text for graduate students and active researchers.

Methods of Mathematical Physics

Methods of Mathematical Physics
Author :
Publisher : John Wiley & Sons
Total Pages : 852
Release :
ISBN-10 : 9783527617241
ISBN-13 : 3527617248
Rating : 4/5 (41 Downloads)

Synopsis Methods of Mathematical Physics by : Richard Courant

Since the first volume of this work came out in Germany in 1937, this book, together with its first volume, has remained standard in the field. Courant and Hilbert's treatment restores the historically deep connections between physical intuition and mathematical development, providing the reader with a unified approach to mathematical physics. The present volume represents Richard Courant's final revision of 1961.

Introduction to Partial Differential Equations with Applications

Introduction to Partial Differential Equations with Applications
Author :
Publisher : Courier Corporation
Total Pages : 434
Release :
ISBN-10 : 9780486132174
ISBN-13 : 048613217X
Rating : 4/5 (74 Downloads)

Synopsis Introduction to Partial Differential Equations with Applications by : E. C. Zachmanoglou

This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.