On different concepts for the linearization of matrix polynomials and canonical decompositions of structured matrices with respect to indefinite sesquilinear forms

On different concepts for the linearization of matrix polynomials and canonical decompositions of structured matrices with respect to indefinite sesquilinear forms
Author :
Publisher : Logos Verlag Berlin GmbH
Total Pages : 194
Release :
ISBN-10 : 9783832549145
ISBN-13 : 3832549145
Rating : 4/5 (45 Downloads)

Synopsis On different concepts for the linearization of matrix polynomials and canonical decompositions of structured matrices with respect to indefinite sesquilinear forms by : Philip Saltenberger

In this thesis, a novel framework for the construction and analysis of strong linearizations for matrix polynomials is presented. Strong linearizations provide the standard means to transform polynomial eigenvalue problems into equivalent generalized eigenvalue problems while preserving the complete finite and infinite eigenstructure of the problem. After the transformation, the QZ algorithm or special methods appropriate for structured linearizations can be applied for finding the eigenvalues efficiently. The block Kronecker ansatz spaces proposed here establish an innovative and flexible approach for the construction of strong linearizations in the class of strong block minimal bases pencils. Moreover, they represent a new vector-space-setting for linearizations of matrix polynomials that additionally provides a common basis for various existing techniques on this task (such as Fiedler-linearizations). New insights on their relations, similarities and differences are revealed. The generalized eigenvalue problems obtained often allow for an efficient numerical solution. This is discussed with special attention to structured polynomial eigenvalue problems whose linearizations are structured as well. Structured generalized eigenvalue problems may also lead to equivalent structured (standard) eigenvalue problems. Thereby, the transformation produces matrices that can often be regarded as selfadjoint or skewadjoint with respect to some indefinite inner product. Based on this observation, normal matrices in indefinite inner product spaces and their spectral properties are studied and analyzed. Multiplicative and additive canonical decompositions respecting the matrix structure induced by the inner product are established.

Numerical Methods for General and Structured Eigenvalue Problems

Numerical Methods for General and Structured Eigenvalue Problems
Author :
Publisher : Springer Science & Business Media
Total Pages : 272
Release :
ISBN-10 : 9783540285021
ISBN-13 : 3540285024
Rating : 4/5 (21 Downloads)

Synopsis Numerical Methods for General and Structured Eigenvalue Problems by : Daniel Kressner

This book is about computing eigenvalues, eigenvectors, and invariant subspaces of matrices. Treatment includes generalized and structured eigenvalue problems and all vital aspects of eigenvalue computations. A unique feature is the detailed treatment of structured eigenvalue problems, providing insight on accuracy and efficiency gains to be expected from algorithms that take the structure of a matrix into account.

Perturbation theory for linear operators

Perturbation theory for linear operators
Author :
Publisher : Springer Science & Business Media
Total Pages : 610
Release :
ISBN-10 : 9783662126783
ISBN-13 : 3662126788
Rating : 4/5 (83 Downloads)

Synopsis Perturbation theory for linear operators by : Tosio Kato

Lectures on K3 Surfaces

Lectures on K3 Surfaces
Author :
Publisher : Cambridge University Press
Total Pages : 499
Release :
ISBN-10 : 9781316797259
ISBN-13 : 1316797252
Rating : 4/5 (59 Downloads)

Synopsis Lectures on K3 Surfaces by : Daniel Huybrechts

K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.

Notes on Seiberg-Witten Theory

Notes on Seiberg-Witten Theory
Author :
Publisher : American Mathematical Soc.
Total Pages : 504
Release :
ISBN-10 : 9780821821459
ISBN-13 : 0821821458
Rating : 4/5 (59 Downloads)

Synopsis Notes on Seiberg-Witten Theory by : Liviu I. Nicolaescu

After background on elliptic equations, Clifford algebras, Dirac operators, and Fredholm theory, chapters introduce solutions of the Seiberg-Witten equations and the group of gauge transformations, then look at algebraic surfaces. A final chapter presents in great detail a cut-and-paste technique for computing Seiberg-Witten invariants, covering elliptic equations on manifolds with cylindrical ends, finite energy monopoles on cylindrical manifolds, local and global properties of the moduli spaces of finite energy monopoles, and the process of reconstructing the space of monopoles on a 4-manifold decomposed into several parts by a hypersurface. Annotation copyrighted by Book News, Inc., Portland, OR.

Linear Algebra and Geometry

Linear Algebra and Geometry
Author :
Publisher : CRC Press
Total Pages : 324
Release :
ISBN-10 : 9056990497
ISBN-13 : 9789056990497
Rating : 4/5 (97 Downloads)

Synopsis Linear Algebra and Geometry by : P. K. Suetin

This advanced textbook on linear algebra and geometry covers a wide range of classical and modern topics. Differing from existing textbooks in approach, the work illustrates the many-sided applications and connections of linear algebra with functional analysis, quantum mechanics and algebraic and differential geometry. The subjects covered in some detail include normed linear spaces, functions of linear operators, the basic structures of quantum mechanics and an introduction to linear programming. Also discussed are Kahler's metic, the theory of Hilbert polynomials, and projective and affine geometries. Unusual in its extensive use of applications in physics to clarify each topic, this comprehensice volume should be of particular interest to advanced undergraduates and graduates in mathematics and physics, and to lecturers in linear and multilinear algebra, linear programming and quantum mechanics.

Linear Algebra for Large Scale and Real-Time Applications

Linear Algebra for Large Scale and Real-Time Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 434
Release :
ISBN-10 : 9789401581967
ISBN-13 : 9401581967
Rating : 4/5 (67 Downloads)

Synopsis Linear Algebra for Large Scale and Real-Time Applications by : M.S. Moonen

Proceedings of the NATO Advanced Study Institute, Leuven, Belgium, August 3-14, 1992

Partial Differential Equations and the Finite Element Method

Partial Differential Equations and the Finite Element Method
Author :
Publisher : John Wiley & Sons
Total Pages : 505
Release :
ISBN-10 : 9780471764090
ISBN-13 : 0471764094
Rating : 4/5 (90 Downloads)

Synopsis Partial Differential Equations and the Finite Element Method by : Pavel Ŝolín

A systematic introduction to partial differential equations and modern finite element methods for their efficient numerical solution Partial Differential Equations and the Finite Element Method provides a much-needed, clear, and systematic introduction to modern theory of partial differential equations (PDEs) and finite element methods (FEM). Both nodal and hierachic concepts of the FEM are examined. Reflecting the growing complexity and multiscale nature of current engineering and scientific problems, the author emphasizes higher-order finite element methods such as the spectral or hp-FEM. A solid introduction to the theory of PDEs and FEM contained in Chapters 1-4 serves as the core and foundation of the publication. Chapter 5 is devoted to modern higher-order methods for the numerical solution of ordinary differential equations (ODEs) that arise in the semidiscretization of time-dependent PDEs by the Method of Lines (MOL). Chapter 6 discusses fourth-order PDEs rooted in the bending of elastic beams and plates and approximates their solution by means of higher-order Hermite and Argyris elements. Finally, Chapter 7 introduces the reader to various PDEs governing computational electromagnetics and describes their finite element approximation, including modern higher-order edge elements for Maxwell's equations. The understanding of many theoretical and practical aspects of both PDEs and FEM requires a solid knowledge of linear algebra and elementary functional analysis, such as functions and linear operators in the Lebesgue, Hilbert, and Sobolev spaces. These topics are discussed with the help of many illustrative examples in Appendix A, which is provided as a service for those readers who need to gain the necessary background or require a refresher tutorial. Appendix B presents several finite element computations rooted in practical engineering problems and demonstrates the benefits of using higher-order FEM. Numerous finite element algorithms are written out in detail alongside implementation discussions. Exercises, including many that involve programming the FEM, are designed to assist the reader in solving typical problems in engineering and science. Specifically designed as a coursebook, this student-tested publication is geared to upper-level undergraduates and graduate students in all disciplines of computational engineeringand science. It is also a practical problem-solving reference for researchers, engineers, and physicists.

Dictionary of Applied Math for Engineers and Scientists

Dictionary of Applied Math for Engineers and Scientists
Author :
Publisher : CRC Press
Total Pages : 165
Release :
ISBN-10 : 9781420037760
ISBN-13 : 1420037765
Rating : 4/5 (60 Downloads)

Synopsis Dictionary of Applied Math for Engineers and Scientists by : Emma Previato

Despite the seemingly close connections between mathematics and other scientific and engineering fields, practical explanations intelligible to those who are not primarily mathematicians are even more difficult to find. The Dictionary of Applied Mathematics for Engineers and Scientists fills that void. It contains authoritative yet accessible defin