Convection-diffusion Problems

Convection-diffusion Problems
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : 1470450216
ISBN-13 : 9781470450212
Rating : 4/5 (16 Downloads)

Synopsis Convection-diffusion Problems by : Martin Stynes

Many physical problems involve diffusive and convective (transport) processes. When diffusion dominates convection, standard numerical methods work satisfactorily. But when convection dominates diffusion, the standard methods become unstable, and special techniques are needed to compute accurate numerical approximations of the unknown solution. This convection-dominated regime is the focus of the book. After discussing at length the nature of solutions to convection-dominated convection-diffusion problems, the authors motivate and design numerical methods that are particularly suited to this c.

Modeling of Atmospheric Chemistry

Modeling of Atmospheric Chemistry
Author :
Publisher : Cambridge University Press
Total Pages : 631
Release :
ISBN-10 : 9781108210959
ISBN-13 : 1108210953
Rating : 4/5 (59 Downloads)

Synopsis Modeling of Atmospheric Chemistry by : Guy P. Brasseur

Mathematical modeling of atmospheric composition is a formidable scientific and computational challenge. This comprehensive presentation of the modeling methods used in atmospheric chemistry focuses on both theory and practice, from the fundamental principles behind models, through to their applications in interpreting observations. An encyclopaedic coverage of methods used in atmospheric modeling, including their advantages and disadvantages, makes this a one-stop resource with a large scope. Particular emphasis is given to the mathematical formulation of chemical, radiative, and aerosol processes; advection and turbulent transport; emission and deposition processes; as well as major chapters on model evaluation and inverse modeling. The modeling of atmospheric chemistry is an intrinsically interdisciplinary endeavour, bringing together meteorology, radiative transfer, physical chemistry and biogeochemistry, making the book of value to a broad readership. Introductory chapters and a review of the relevant mathematics make this book instantly accessible to graduate students and researchers in the atmospheric sciences.

Finite Difference Computing with PDEs

Finite Difference Computing with PDEs
Author :
Publisher : Springer
Total Pages : 522
Release :
ISBN-10 : 9783319554563
ISBN-13 : 3319554565
Rating : 4/5 (63 Downloads)

Synopsis Finite Difference Computing with PDEs by : Hans Petter Langtangen

This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.

Robust Numerical Methods for Singularly Perturbed Differential Equations

Robust Numerical Methods for Singularly Perturbed Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 599
Release :
ISBN-10 : 9783540344674
ISBN-13 : 3540344675
Rating : 4/5 (74 Downloads)

Synopsis Robust Numerical Methods for Singularly Perturbed Differential Equations by : Hans-Görg Roos

This new edition incorporates new developments in numerical methods for singularly perturbed differential equations, focusing on linear convection-diffusion equations and on nonlinear flow problems that appear in computational fluid dynamics.

Numerical Approximation of Partial Differential Equations

Numerical Approximation of Partial Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 551
Release :
ISBN-10 : 9783540852681
ISBN-13 : 3540852689
Rating : 4/5 (81 Downloads)

Synopsis Numerical Approximation of Partial Differential Equations by : Alfio Quarteroni

Everything is more simple than one thinks but at the same time more complex than one can understand Johann Wolfgang von Goethe To reach the point that is unknown to you, you must take the road that is unknown to you St. John of the Cross This is a book on the numerical approximation ofpartial differential equations (PDEs). Its scope is to provide a thorough illustration of numerical methods (especially those stemming from the variational formulation of PDEs), carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is our primary concern. Many kinds of problems are addressed: linear and nonlinear, steady and time-dependent, having either smooth or non-smooth solutions. Besides model equations, we consider a number of (initial-) boundary value problems of interest in several fields of applications. Part I is devoted to the description and analysis of general numerical methods for the discretization of partial differential equations. A comprehensive theory of Galerkin methods and its variants (Petrov Galerkin and generalized Galerkin), as wellas ofcollocationmethods, is devel oped for the spatial discretization. This theory is then specified to two numer ical subspace realizations of remarkable interest: the finite element method (conforming, non-conforming, mixed, hybrid) and the spectral method (Leg endre and Chebyshev expansion).

Nonstandard Finite Difference Schemes: Methodology And Applications

Nonstandard Finite Difference Schemes: Methodology And Applications
Author :
Publisher : World Scientific
Total Pages : 332
Release :
ISBN-10 : 9789811222559
ISBN-13 : 981122255X
Rating : 4/5 (59 Downloads)

Synopsis Nonstandard Finite Difference Schemes: Methodology And Applications by : Ronald E Mickens

This second edition of Nonstandard Finite Difference Models of Differential Equations provides an update on the progress made in both the theory and application of the NSFD methodology during the past two and a half decades. In addition to discussing details related to the determination of the denominator functions and the nonlocal discrete representations of functions of dependent variables, we include many examples illustrating just how this should be done.Of real value to the reader is the inclusion of a chapter listing many exact difference schemes, and a chapter giving NSFD schemes from the research literature. The book emphasizes the critical roles played by the 'principle of dynamic consistency' and the use of sub-equations for the construction of valid NSFD discretizations of differential equations.

Computational Techniques for Fluid Dynamics 1

Computational Techniques for Fluid Dynamics 1
Author :
Publisher : Springer Science & Business Media
Total Pages : 412
Release :
ISBN-10 : 9783642582295
ISBN-13 : 364258229X
Rating : 4/5 (95 Downloads)

Synopsis Computational Techniques for Fluid Dynamics 1 by : Clive A.J. Fletcher

This well-known 2-volume textbook provides senior undergraduate and postgraduate engineers, scientists and applied mathematicians with the specific techniques, and the framework to develop skills in using the techniques in the various branches of computational fluid dynamics. A solutions manual to the exercises is in preparation.

Parallel Numerical Computation with Applications

Parallel Numerical Computation with Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 256
Release :
ISBN-10 : 0792385888
ISBN-13 : 9780792385882
Rating : 4/5 (88 Downloads)

Synopsis Parallel Numerical Computation with Applications by : Laurence Tianruo Yang

Parallel Numerical Computations with Applications contains selected edited papers presented at the 1998 Frontiers of Parallel Numerical Computations and Applications Workshop, along with invited papers from leading researchers around the world. These papers cover a broad spectrum of topics on parallel numerical computation with applications; such as advanced parallel numerical and computational optimization methods, novel parallel computing techniques, numerical fluid mechanics, and other applications related to material sciences, signal and image processing, semiconductor technology, and electronic circuits and systems design. This state-of-the-art volume will be an up-to-date resource for researchers in the areas of parallel and distributed computing.